精英家教网 > 高中数学 > 题目详情
2.同时投掷三颗骰子一次,设A=“三个点都不相同“,B=“至少有一个6点,则P(A|B)为(  )
A.$\frac{1}{2}$B.$\frac{60}{91}$C.$\frac{5}{18}$D.$\frac{91}{216}$

分析 根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,即在“至少出现一个6点”的情况下,“三个点数都不相同”的概率,分别求得“至少出现一个6点”与“三个点数都不相同”的情况数目,进而相比可得答案.

解答 解:根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,
即在“至少出现一个6点”的情况下,“三个点数都不相同”的概率,
“至少出现一个6点”的情况数目为6×6×6-5×5×5=91,
“三个点数都不相同”则只有一个6点,共C31×5×4=60种,
故P(A|B)=$\frac{60}{91}$.
故选:B.

点评 本题考查条件概率,注意此类概率计算与其他的不同,P(A|B)其含义为在B发生的情况下,A发生的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,M为边BC的中点,若$\overrightarrow{CM}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则m+n=(  )
A.1B.-1C.0D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某地一天中6时至14时的温度变化曲线近似满足函数T=Asin(ωt+φ)+b(其中$\frac{π}{2}$<φ<π),6时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是20°C;图中曲线对应的函数解析式是y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,14].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x2-cosx,则f(-0.5),f(0),f(0.6)这三个函数值从小到大分别为f(0.6)>f(-0.5)>f(0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f($\sqrt{x}$+1)=x+2$\sqrt{x}$+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知一批10000只白炽灯泡的光通量X~N(200,100),则这批灯泡中光通量X>220个数大约为(  )
(参考数据:若X:N(μ,2),则X在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)内的概率分别为68.3%,95.4%,99.7% )
A.230B.460C.4770D.9540

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=ax2-2x+2,此函数在(1,4)上有零点,则a的取值范围为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知全集为R,A={x|2m+1≤x≤3m-5},∁RB={x|x<13或x>22},A⊆A∩B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在区间[0,2]上随机取两个数x,y,则xy∈[0,2]的概率是$\frac{1+ln2}{2}$.

查看答案和解析>>

同步练习册答案