精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=x2-cosx,则f(-0.5),f(0),f(0.6)这三个函数值从小到大分别为f(0.6)>f(-0.5)>f(0).

分析 判断f(x)=x2-cosx的奇偶性,转化f(-0.5)=f(0.5),判断函数的单调性,由f(x)在(0,1)为增函数,知f(0)<f(0.5)<f(0.6),由此能比较f(-0.5),f(0),f(0.6)的大小关系.

解答 解:∵f(x)=x2-cosx为偶函数,
∴f(-0.5)=f(0.5),
∵f′(x)=2x+sinx,
由x∈(0,1)时,f′(x)>0,
知f(x)在(0,1)为增函数,
所以f(0)<f(0.5)<f(0.6)
所以f(0)<f(-0.5)<f(0.6),即f(0.6)>f(-0.5)>f(0).
故答案为:f(0.6)>f(-0.5)>f(0).

点评 本题考查函数值大小的比较,是基础题.解题时要认真审题,注意函数的单调性和导数的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C的对边分别为a,b,c,满足asinA-csinC=(a-b)sinB,则角C的值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线x+y+1=0与直线ax+y-1=0互相平行,则a的值等于(  )
A.1B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C过点O(0,0),和点T(1,3),且圆心在直线n:x-2y=0上,直线l:x+my-2m-1=0,m∈R,
(1)若直线n与直线l平行,求这两条平行线间的距离;
(2)求圆C的方程;
(3)设直线l恒过定点A,求点A的坐标并判断点A与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设某一随机变量X~N(0,1),记P1=P(-2≤X≤-1),P2=P(0≤X≤1),则P1P2的关系是(  )
A.P1<P2B.P1>P2C.P1=P2D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:x2+y2-6x+4y+12=0,点P在圆上,求点P到直线l:x+y-5=0的最大距离和最小距离,并求最远点及最近点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.同时投掷三颗骰子一次,设A=“三个点都不相同“,B=“至少有一个6点,则P(A|B)为(  )
A.$\frac{1}{2}$B.$\frac{60}{91}$C.$\frac{5}{18}$D.$\frac{91}{216}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{3}$,右顶点为($\sqrt{3}$,0).
(1)求G的方程;
(2)直线y=kx+1与曲线G交于不同的两点A,B,若在x轴上存在一点M,使得|AM|=|BM|,求点M的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.己知集合A=[0,1),B=[1,+∞),函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-{x}^{2},x∈A}\\{2{x}^{2}-x+a,x∈B}\end{array}\right.$,若对任意x0∈A,都有f(f(x0))∈B,则实数a的取值范围是(  )
A.[-1,2)B.[-1,+∞)C.[0,+∞)D.(-2,1]

查看答案和解析>>

同步练习册答案