精英家教网 > 高中数学 > 题目详情
11.若$\overrightarrow{AB}$=(3,x),$\overrightarrow{CD}$=(-2,6),$\overrightarrow{AB}$⊥$\overrightarrow{CD}$,则x=1.

分析 根据两向量垂直时数量积为0,列出方程即可求出结果.

解答 解:∵$\overrightarrow{AB}$=(3,x),$\overrightarrow{CD}$=(-2,6),且$\overrightarrow{AB}$⊥$\overrightarrow{CD}$,
∴3×(-2)+6x=0,
解得x=1.
故答案为:1.

点评 本题考查了平面向量的垂直与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.经过点M(1,5)且倾斜角为$\frac{2π}{3}$的直线的参数方程是(  )
A.$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=5+\frac{1}{2}t}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=5-\frac{1}{2}t}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5-\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某住宅小区有1500名户,各户每月的用电量近似服从正态分布N(200,100),则月用电量在220度以上的户数估计约为(  )(参考数据:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974)
A.17B.23C.34D.46

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.正项等比数列{an}中,a3=2,a4•a6=64,则$\frac{{{a_5}+{a_6}}}{{{a_1}+{a_2}}}$的值是(  )
A.4B.8C.16D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从两名老师和四名学生中选出四人排成一排照相,其中老师必须入选且相邻,共有排列方法(  )
A.36种B.72种C.90种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用分析法证明:$\sqrt{3}$+$\sqrt{5}$>$\sqrt{6}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)是定义在R上不恒为0的函数,且对于任意的实数a,b满足f(2)=2,f(ab)=af(b)+bf(a),an=$\frac{f({2}^{n})}{{2}^{n}}$(n∈N*),bn=$\frac{f({2}^{n})}{n}$(n∈N*),给出下列命题:
①f(0)=f(1);
②f(x)为奇函数;
③数列{an}为等差数列;
④数列{bn}为等比数列.
其中正确的命题是①②③④.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C的对边分别为a,b,c,满足asinA-csinC=(a-b)sinB,则角C的值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线x+y+1=0与直线ax+y-1=0互相平行,则a的值等于(  )
A.1B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

同步练习册答案