精英家教网 > 高中数学 > 题目详情
19.正项等比数列{an}中,a3=2,a4•a6=64,则$\frac{{{a_5}+{a_6}}}{{{a_1}+{a_2}}}$的值是(  )
A.4B.8C.16D.64

分析 设正项等比数列{an}的公比为q,由a3=2,a4•a6=64,利用通项公式解得q2,再利用通项公式即可得出.

解答 解:设正项等比数列{an}的公比为q,∵a3=2,a4•a6=64,
∴${a}_{1}{q}^{2}$=2,${a}_{1}^{2}{q}^{8}$=64,
解得q2=4,
则$\frac{{{a_5}+{a_6}}}{{{a_1}+{a_2}}}$$\frac{{q}^{4}({a}_{1}+{a}_{2})}{{a}_{1}+{a}_{2}}$=42=16.
故选:C.

点评 本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设随机变量ξ~B(2,p),η~B(3,p),若P(ξ≥1)=$\frac{5}{9}$,则P(η≥2)的值为(  )
A.$\frac{20}{27}$B.$\frac{8}{27}$C.$\frac{7}{27}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x+2y+4z=1,则x2+y2+z2的最小值是(  )
A.21B.$\frac{1}{21}$C.16D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c;已知A=$\frac{π}{4}$,bsin($\frac{π}{4}$+C)-csin($\frac{π}{4}$+B)=a.
(1)求角B、C的大小;
(2)若a=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在数列{an}中,若an=3+33+35+…+32n+1,则an=(  )
A.$\frac{{3•({1-{3^n}})}}{1-3}$B.$\frac{{3•({1-{3^{2n+1}}})}}{1-3}$C.$\frac{{3•({1-{9^n}})}}{1-9}$D.$\frac{{3•({1-{9^{n+1}}})}}{1-9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$=(sin20°,cos160°),$\overrightarrow{b}$=(sin140°,sin50°),则$\vec a$•$\vec b$=(  )
A.-$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\overrightarrow{AB}$=(3,x),$\overrightarrow{CD}$=(-2,6),$\overrightarrow{AB}$⊥$\overrightarrow{CD}$,则x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知某离散型随机变量X的分布列如表格,则m=$\frac{7}{12}$.
X123
P$\frac{1}{6}$$\frac{1}{4}$m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=$\sqrt{2}$,b=2,sinB+cosB=$\sqrt{2}$.
(1)求角A的大小;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案