分析 (1)由sinB+cosB=$\sqrt{2}$sin$(B+\frac{π}{4})$=$\sqrt{2}$,可得sin$(B+\frac{π}{4})$=1,即可解得B.再利用正弦定理即可得出.
(2)利用sinC=sin(B+A),及其S△ABC=$\frac{1}{2}absinC$,即可得出.
解答 解:(1)在△ABC中,∵sinB+cosB=$\sqrt{2}$sin$(B+\frac{π}{4})$=$\sqrt{2}$,∴sin$(B+\frac{π}{4})$=1,又B∈(0,π),∴B+$\frac{π}{4}$=$\frac{π}{2}$,解得B=$\frac{π}{4}$.
由正弦定理可得:$\frac{\sqrt{2}}{sinA}$=$\frac{2}{sin\frac{π}{4}}$,解得sinA=$\frac{1}{2}$,∵a<b,∴A=$\frac{π}{6}$.
(2)∵sinC=sin(B+A)=sinBcosA+cosBsinA=$\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}$+$\frac{\sqrt{2}}{2}×\frac{1}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$.
∴S△ABC=$\frac{1}{2}absinC$=$\frac{1}{2}×\sqrt{2}×2×$$\frac{\sqrt{6}+\sqrt{2}}{4}$=$\frac{1+\sqrt{3}}{2}$.
点评 本题考查了正弦定理、和差公式、三角形面积计算公式、诱导公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | 16 | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
| 人数 | 5 | 10 | 15 | 47 | x |
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
| 人数 | 2 | 3 | 10 | y | 2 |
| 女性 | 男性 | 总计 | |
| 网购达人 | 50 | 5 | 55 |
| 非网购达人 | 30 | 15 | 45 |
| 总计 | 80 | 20 | 100 |
| P(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15078 | B. | 14056 | C. | 13174 | D. | 12076 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com