精英家教网 > 高中数学 > 题目详情
14.函数y=$\sqrt{lo{g}_{4}x}$的定义域是[1,+∞).

分析 由根式内部的代数式大于等于0,然后求解对数不等式得答案.

解答 解:由log4x≥0,得x≥1,
∴函数y=$\sqrt{lo{g}_{4}x}$的定义域是[1,+∞).
故答案为:[1,+∞).

点评 本题考查函数的定义域及其求法,考查对数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$=(sin20°,cos160°),$\overrightarrow{b}$=(sin140°,sin50°),则$\vec a$•$\vec b$=(  )
A.-$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x=8,y=18,则$\frac{x+y}{\sqrt{x}-\sqrt{y}}$-$\frac{2xy}{x\sqrt{y}-y\sqrt{x}}$的值为$-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,已知$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,点D在边BC上,且$\overrightarrow{BD}$=$3\overrightarrow{DC}$,用$\overrightarrow a$,$\overrightarrow b$表示$\overrightarrow{AD}$,则$\overrightarrow{AD}$=(  )
A.$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$B.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$D.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=$\sqrt{2}$,b=2,sinB+cosB=$\sqrt{2}$.
(1)求角A的大小;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$x3-ax2+1.
(1)已知函数f(x)在x=1时有极小值,求实数a的值;
(2)求函数f(x)的单调递减区间;
(3)若f(x)≥1在区间[3,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,1),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的正射影的数量为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:?x∈R,使得x2-x+2<0;命题函数f(x)=$\frac{4}{x}$-log3x在区间(3,4)内没有零点.下列命题为真命题的是(  )
A.(¬p)∧(¬q)B.p∧qC.(¬p)∧p)D.(p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“?x0>0,2${\;}^{{x}_{0}}$≤0”的否定是(  )
A.?x>0,2x>0B.?x≤0,2x>0C.?x>0,2x<0D.?x≤0,2x<0

查看答案和解析>>

同步练习册答案