精英家教网 > 高中数学 > 题目详情
4.命题“?x0>0,2${\;}^{{x}_{0}}$≤0”的否定是(  )
A.?x>0,2x>0B.?x≤0,2x>0C.?x>0,2x<0D.?x≤0,2x<0

分析 利用特称命题的否定是全称命题,写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以,命题“?x0>0,2${\;}^{{x}_{0}}$≤0”的否定是:?x>0,2x>0.
故选:A.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数y=$\sqrt{lo{g}_{4}x}$的定义域是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:x2+y2-6x+4y+12=0,点P在圆上,求点P到直线l:x+y-5=0的最大距离和最小距离,并求最远点及最近点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{x}^{2}+x+1}{{e}^{x}}$.
(1)求函数y=f(x)的单调区间;
(2)若曲线y=f(x)与直线y=b(b∈R)有3个交点,求实数b的取值范围;
(3)过点P(-1,0)可作几条直线与曲线y=f(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{3}$,右顶点为($\sqrt{3}$,0).
(1)求G的方程;
(2)直线y=kx+1与曲线G交于不同的两点A,B,若在x轴上存在一点M,使得|AM|=|BM|,求点M的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\sqrt{{x}^{2}-4x}$,单调增区间为[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设x→x0时,f(x)→∞,g(x)→A(A是常数),试证明:$\underset{lim}{x→{x}_{0}}$$\frac{g(x)}{f(x)}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在正方体ABCD-A'B'C'D'中,E,F,G分别是棱A'B',BB',B'C'上的中点.求证:平面EFG∥平面ACD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;       
(Ⅱ)求数列{an•2n}的前n项和Tn

查看答案和解析>>

同步练习册答案