精英家教网 > 高中数学 > 题目详情
15.如图,长方形木块上底面有一点E,在上底面画一条过点E的线段l,使l与AE垂直.

分析 连接A1E,再过点E作直线l,当直线l垂直于A1E时,必有l垂直于AE,由线面垂直的判定定理先证明l⊥平面AA1E,即可证明l⊥AE.

解答 解:如图,连接A1E,再过点E作直线l,当直线l垂直于A1E时,必有l垂直于AE.
由做法可知,直线l⊥A1E,
又l?上底面A1B1C1D1,AA1⊥上底面A1B1C1D1,即有:AA1⊥l,
又A1E∩AA1=A1
所以,l⊥平面AA1E,
由AE?平面AA1E,
故有:l⊥AE.

点评 本题主要考查了直线与平面垂直的性质,考查了空间想象能力和推理论证能力,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在△ABC中,已知$\overrightarrow{AB}•\overrightarrow{AC}=9,sinB=cosAsinC$,S△ABC=6,P为线段AB上的点,且$\overrightarrow{CP}=x\frac{{\overrightarrow{CA}}}{{|{\overrightarrow{CA}}|}}+y\frac{{\overrightarrow{CB}}}{{|{\overrightarrow{CB}}|}}$,
则$\overrightarrow{CP}•\overrightarrow{BP}$的最小值为$-\frac{64}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意实数x,均有x-1≤f(x)≤x2-3x+3恒成立.
(1)求函数的解析式;
(2)若关于x的不等式f(x)≤nx-1的解集非空,求实数n的取值集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b,c均为直线,α,β为平面,下面关于直线与平面关系的命题:
(1)任意给定一条直线与一个平面α,则平面α内必存在与a垂直的直线;
(2)a∥β,β内必存在与a相交的直线;
(3)α∥β,a?α,b?β,必存在与a,b都垂直的直线;
(4)α⊥β,α∩β=c,a?α,b?β,若a不垂直c,则a不垂直b.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ(2cosθ-sinθ)=3与ρ(cosθ+2sinθ)=-1的交点的极坐标为$(\sqrt{2},\frac{7π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数y=mx与y=ex在[-1,+∞)上无交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)的定义域为[-1,1],图象如图1所示;函数g(x)的定义域为[-2,2],图象如图2所示,方程f(g(x))=0有m个实数根,方程g(f(x))=0有n个实数根,则m+n=(  ) 
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C的方程为$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$=4,经过点(-1,0)作斜率为k的直线l,l与曲线C交于A、B两点,l与直线x=-4交于点D,O是坐标原点.
(Ⅰ)若$\overrightarrow{OA}+\overrightarrow{OD}=2\overrightarrow{OB}$,求证:k2=$\frac{5}{4}$;
(Ⅱ)是否存在实数k,使△AOB为锐角三角形?若存在,求k的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在极坐标系中,已知点P(2,$\frac{π}{3}$),Q为曲线ρ=cosθ上任意一点,则|PQ|的最小值为$\frac{\sqrt{13}-1}{2}$.

查看答案和解析>>

同步练习册答案