精英家教网 > 高中数学 > 题目详情
6.若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意实数x,均有x-1≤f(x)≤x2-3x+3恒成立.
(1)求函数的解析式;
(2)若关于x的不等式f(x)≤nx-1的解集非空,求实数n的取值集合A.

分析 (1)使用待定系数法求函数的解析式,关键是根据已知条件构造方程组.
(2)当f(x)的二次系数a>0时,f(x)≤0的解集非空?△≥0.

解答 解:(1)由x-1=x2-3x+3可得x=2,
故由题可知1≤f(2)≤1,
从而f(2)=1.
因此$\left\{\begin{array}{l}{a-b+c=0}\\{4a+2b+c=1}\end{array}\right.$,
故b=$\frac{1}{3}$-a,c=$\frac{1}{3}$-2a.由x-1≤f(x)
得ax2-($\frac{2}{3}$+a)x+$\frac{4}{3}$-2a≥0对x∈R恒成立,
故△=($\frac{2}{3}$+a)2-4a($\frac{4}{3}$-2a)≤0,
即9a2-4a+$\frac{4}{9}$≤0,
解得a=$\frac{2}{9}$,
故f(x)=2$\frac{2}{9}$x2+$\frac{1}{9}$x-$\frac{1}{9}$;
(2)由$\frac{2}{9}$x2+$\frac{1}{9}$x-$\frac{1}{9}$≤nx-1
得2x2+(1-9n)x+8≤0,
故△=(1-9n)2-64≥0,
解得n≤-$\frac{7}{9}$或n≥1,从而A=(-∞,-$\frac{7}{9}$]∪[1,+∞).

点评 解一元二次不等式ax2+bx+c>0 或ax2+bx+c<0,反映在数量关系上就是考查二次方程ax2+bx+c=0的根,反映在图形上就是考查二次函数y=ax2+bx+c的图象与x轴的关系.因此要熟练掌握“三个二次”之间的相互转换,善于用转化思想分析解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.阅读如图所示的程序框图,则输出的A的值是(  )
A.15B.21C.28D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设数列{an}为等比数列,其中a4=2,a5=5,阅读如图所示的程序框图,运行相应的程序,则输出结果s为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知G为△ABC的重心,令$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,过点G的直线分别交AB、AC于P、Q两点,且$\overrightarrow{AP}=m\overrightarrow a$,$\overrightarrow{AQ}=n\overrightarrow b$,则$\frac{1}{m}+\frac{1}{n}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线y2=4x与双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的一条渐近线交于点M(M异于原点),且点M到抛物线焦点的距离等于3,则双曲线的离心率是(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.抛物线$y=\frac{1}{4}{x^2}$上到焦点的距离等于6的点的坐标为$(2\sqrt{5},5),(-2\sqrt{5},5)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)定义域为D,若满足:①f(x)在D内是单调函数;②存在[a,b]⊆D使f(x)在[a,b]上的值域为[2a,2b];那么就称y=f(x)为“域倍函数”.若函数f(x)=loga(ax+2t)(a>0,a≠1)是“域倍函数”,则t的取值范围为$-\frac{1}{8}<t<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,长方形木块上底面有一点E,在上底面画一条过点E的线段l,使l与AE垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=x2+ax+sin$\frac{π}{2}$x,x∈(0,1)
(1)若f(x)在定义域内单调递增,求a的取值范围;
(2)当a=-2时,记f(x)得极小值为f(x0),若f(x1)=f(x2),求证:x1+x2>2x0

查看答案和解析>>

同步练习册答案