精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2-3x+2至多有一个零点,则a的取值范围是
 
分析:由“函数f(x)=ax2-3x+2至多有一个零点”,则有函数图象与x轴至多有一个交点,即相应方程至多有一个根,用判别式法求解即可,要注意a的讨论.
解答:解:当a=0时,f(x)=ax2-3x+2=-3x+2=0
∴x=
2
3

符合题意.
当a≠0时,f(x)=ax2-3x+2=0
∵函数f(x)=ax2-3x+2至多有一个零点
∴△=9-8a≤0
∴a≥
9
8

综上:a的取值范围是{a|a=0或a≥
9
8
}
故答案为:{a|a=0或a≥
9
8
}
点评:本题主要考查函数的零点,即考查二次函数的图象与x轴的交点的横坐标,对应方程的根,要注意数形结合思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案