精英家教网 > 高中数学 > 题目详情
19.已知抛物线y2=8x的焦点与双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的一个焦点重合,则该双曲线的离心率为(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{{4\sqrt{15}}}{15}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{2}$

分析 先求出抛物线y2=8x的焦点坐标F,从而得到双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的一个焦点F,由此能求出a2,进而能求出此双曲线的离心率.

解答 解:抛物线y2=8x的焦点坐标为F(2,0),
∵双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的一个焦点与抛物线y2=8x的焦点重合,
∴双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的一个焦点为F(2,0),
∴a2+1=4,解得a2=3,
∴此双曲线的离心率e=$\frac{2\sqrt{3}}{3}$.
故选:C.

点评 本题考查双曲线的离心率的求法,涉及到抛物线、双曲线的简单性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求实数m的范围,使关于x的方程x2+2(m-1)x+2m+6=0有两个实根,且都比1大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{m}$=(cosx,sin2x),$\overrightarrow{n}$=(cosx,$\frac{\sqrt{3}}{2}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求f(x)的取值范围;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,若函数g(x)=bf(x)+c在x=A处取最大值6,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)$\overrightarrow{BA}$•$\overrightarrow{BC}$=c$\overrightarrow{CB}$•$\overrightarrow{CA}$.
(1)求角B的大小;
(2)若|$\overrightarrow{BA}$-$\overrightarrow{BC}$|=2$\sqrt{2}$,求|$\overrightarrow{BA}$|+|$\overrightarrow{BC}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知{an}为等差数列,Sn为其前n项和.若a1=12,S6=S11,则必有(  )
A.a17=0B.a6+a12=0C.S17>0D.a9<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z满足z(1+i)=1-i(i是虚数单位),则z的共轭复数$\overline{z}$的虚部是(  )
A.-iB.-1C.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=90°,AB=BC=2AD=4,M是BC边的中点,E,F分别是AB,CD上的点,且EF∥BC,设AE=x.如图,沿EF将四边形AEFD折起,使平面AEFD⊥平面EBCF.
(1)当x=2时,求证:BD⊥EM;
(2)当x变化时,求四棱锥D-BCEF的体积f(x)的函数式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.正三角形ABC的边长为2,D,E,F分别在三边AB,BC,CA上,D为AB的中点,DE⊥DF,且DF=$\frac{{\sqrt{3}}}{2}$DE,则∠BDE=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b3=9,a5+b5=25.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列$\{\frac{a_n}{b_n}\}$的前n项和Sn

查看答案和解析>>

同步练习册答案