精英家教网 > 高中数学 > 题目详情
11.已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=90°,AB=BC=2AD=4,M是BC边的中点,E,F分别是AB,CD上的点,且EF∥BC,设AE=x.如图,沿EF将四边形AEFD折起,使平面AEFD⊥平面EBCF.
(1)当x=2时,求证:BD⊥EM;
(2)当x变化时,求四棱锥D-BCEF的体积f(x)的函数式.

分析 (1)作DH⊥EF于H,连结BH,MH,EM,证明DH⊥平面EBCF.然后推出EM⊥平面BDH.即可证明EM⊥BD.(2)设DH=AE=x为四棱锥D-BCFE的高,求出底面面积然后求解体积的函数解析式.

解答 解析:(1)证明:如图,作DH⊥EF于H,连结BH,MH,EM,∵平面AEFD⊥平面EBCF,∴DH⊥平面EBCF.

又EM?平面EBCF,∴EM⊥DH.∵$EH=AD=\frac{1}{2}BC$,EF∥BC,∠EBC=90°,
∴四边形BMHE为正方形,∴EM⊥BH.∴EM⊥平面BDH.
又BD?平面BDH,
∴EM⊥BD.…(6分)
(2)由(1)知,DH=AE=x为四棱锥D-BCFE的高,∵AE=x,∴BE=4-x,$EF=2+\frac{1}{2}x$,
∴$\begin{array}{c}{S}_{BCFE}=\frac{1}{2}(EF+BC)•BE=\frac{1}{2}(2+\frac{1}{2}x+4)•(4-x)\end{array}\right.$=$\begin{array}{c}\\-\frac{1}{4}{x}^{2}-2x+12.\end{array}\right.$,
∴$f(x)=\frac{1}{3}{S_{BCFE}}•x=-\frac{1}{12}{x^3}-\frac{2}{3}{x^2}+4x$.…(12分)

点评 本题考查直线与平面垂直的判断与性质定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆M:$\frac{x^2}{4}+\frac{y^2}{3}$=1,点F1,C分别是椭圆M的左焦点、左顶点,过点F1的直线l(不与x轴重合)交M于A,B两点.
(Ⅰ)求M的离心率及短轴长;
(Ⅱ)是否存在直线l,使得点B在以线段AC为直径的圆上,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=12x焦点的一条直线与抛物线相交于A、B两点,若|AB|=10,则线段AB的中点到y轴的距离等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线y2=8x的焦点与双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的一个焦点重合,则该双曲线的离心率为(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{{4\sqrt{15}}}{15}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知I为△ABC所在平面上的一点,且AB=c,AC=b,BC=a.若a$\overrightarrow{IA}$+b$\overrightarrow{IB}$+c$\overrightarrow{IC}$=$\overrightarrow{0}$,则I一定是△ABC的(  )
A.垂心B.内心C.外心D.重心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,CE为圆O的直径,PE为圆O的切线,E为切点,PBA为圆O的割线,交CE于D点,CD=2,AD=3,BD=4,则圆O的半径为r=4;PB=20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在O点测量到远处有一物体在做匀速直线运动,开始时该物体位于P点,一分钟后,其位置在Q点,且∠POQ=90°,再过两分钟后,该物体位于R点,且∠QOR=30°,则tan∠OPQ的值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a,b∈R,则a2(a-b)>0是a>b的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不必要也不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a为无理数,则在过点P(a,-$\frac{1}{2}$)的所有直线中(  )
A.有无穷多条直线,每条直线上至少存在两个有理点
B.恰有n(n≥2)条直线,每条直线上至少存在两个有理点
C.有且仅有一条直线至少过两个有理点
D.每条直线至多过一个有理点

查看答案和解析>>

同步练习册答案