精英家教网 > 高中数学 > 题目详情
16.如图,CE为圆O的直径,PE为圆O的切线,E为切点,PBA为圆O的割线,交CE于D点,CD=2,AD=3,BD=4,则圆O的半径为r=4;PB=20.

分析 利用相交弦定理,求出DE,可得CE,即可求出圆O的半径;过O作OF⊥AB,垂足为F,则DF=$\frac{1}{2}$,利用△ODF∽△PDE,求出PD,即可得出结论.

解答 解:由相交弦定理可得CD•DE=AD•DB,
∵CD=2,AD=3,BD=4,
∴2DE=3×4,
∴DE=6,
∴CE=8,
∴圆O的半径为r=4.
过O作OF⊥AB,垂足为F,则DF=$\frac{1}{2}$,
∵△ODF∽△PDE,
∴$\frac{OD}{PD}=\frac{DF}{DE}$,
∴$\frac{2}{PD}=\frac{\frac{1}{2}}{6}$,
∴PD=24,
∵PD=4,
∴PB=20.
故答案为:4;20.

点评 本题考查相交弦定理,考查三角形相似的判定与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知圆C:x2+y2-x-y=0经过椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F和上顶点D.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点P(-2,0)作斜率不为零的直线l与椭圆E交于不同的两点A,B,直线AF,BF分别交椭圆E于点G,H,设$\overrightarrow{AF}$=λ1$\overrightarrow{FG}$,$\overrightarrow{BF}$=λ2$\overrightarrow{FH}$.(λ1,λ2∈R)
(i)求λ12的取值范围;
(ii)是否存在直线l,使得|AF|•|GF|=|BF|•|HF|成立?若存在,求l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)$\overrightarrow{BA}$•$\overrightarrow{BC}$=c$\overrightarrow{CB}$•$\overrightarrow{CA}$.
(1)求角B的大小;
(2)若|$\overrightarrow{BA}$-$\overrightarrow{BC}$|=2$\sqrt{2}$,求|$\overrightarrow{BA}$|+|$\overrightarrow{BC}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z满足z(1+i)=1-i(i是虚数单位),则z的共轭复数$\overline{z}$的虚部是(  )
A.-iB.-1C.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=90°,AB=BC=2AD=4,M是BC边的中点,E,F分别是AB,CD上的点,且EF∥BC,设AE=x.如图,沿EF将四边形AEFD折起,使平面AEFD⊥平面EBCF.
(1)当x=2时,求证:BD⊥EM;
(2)当x变化时,求四棱锥D-BCEF的体积f(x)的函数式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知公差不为0的等差数列{an}满足a1,a3,a4成等比数列,Sn为数列{an}的前n项和,则$\frac{{S}_{3}-{S}_{2}}{{S}_{5}-{S}_{3}}$的值为(  )
A.2B.3C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.正三角形ABC的边长为2,D,E,F分别在三边AB,BC,CA上,D为AB的中点,DE⊥DF,且DF=$\frac{{\sqrt{3}}}{2}$DE,则∠BDE=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在抽样方法中,有放回抽样与无放回抽样中个体被抽到的概率是不同的,但当总体的容量很大而抽取的样本容量很小时,无放回抽样可以近似看作有放回抽样.现有一大批产品,采用随机抽样的方法一件一件抽取进行检验.若抽查的4件产品中未发现不合格产品,则停止检查,并认为该批产品合格;若在查到第4件或在此之前发现不合格产品,则也停止检查,并认为该批产品不合格.假定该批产品的不合格率为0.1,设检查产品的件数为X.
(Ⅰ) 求随机变量X的分布列和数学期望;
(Ⅱ) 通过上述随机抽样的方法进行质量检查,求认为该批产品不合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为$\frac{3}{5}$,但由于体力原因,第7场获胜的概率为$\frac{2}{5}$.
(Ⅰ)求甲队分别以4:2,4:3获胜的概率;
(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案