| A. | 2 | B. | -$\frac{2}{7}$ | C. | 14 | D. | $\frac{14}{5}$ |
分析 作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到a的值.然后即可得到结论.
解答
解:不等式组对应的平面区域如图:
由z=3x+y得y=-3x+z,
平移直线y=-3x+z,则由图象可知当直线y=-3x+z经过点A时,直线y=-3x+z的截距最小,
此时z最小,为3x+y=8
由$\left\{\begin{array}{l}{3x+y=8}\\{2x-y=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{14}{5}}\\{y=-\frac{2}{5}}\end{array}\right.$,即A($\frac{14}{5}$,-$\frac{2}{5}$),
此时A在x=a上,
则a=$\frac{14}{5}$.
故选:D.
点评 本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,3,4} | B. | {2,3,4,5} | C. | {1,2,3,4,5} | D. | {x|1<x≤5,x∈R} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2015}{2016}$ | B. | $\frac{2014}{2015}$ | C. | $\frac{4028}{2015}$ | D. | $\frac{2014}{4030}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com