分析 利用分段函数的性质求解.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{-x}+1,x≤0}\end{array}\right.$,
∴f(1)=log21=0,
f(f(1))=f(0)=3-0+1=2,
f(log3$\frac{1}{2}$)=${3}^{-lo{g}_{3}\frac{1}{2}}$+1=${3}^{lo{g}_{3}2}$+1=2+1=3,
∴f(f(1))+f(log3$\frac{1}{2}$)=2+3=5.
故答案为:5.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{2π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -$\frac{2}{7}$ | C. | 14 | D. | $\frac{14}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com