精英家教网 > 高中数学 > 题目详情
6.若(1+x)n+(1+x${\;}^{\frac{1}{2}}$)n+(1+x${\;}^{\frac{1}{3}}$)n+…+(1+x${\;}^{\frac{1}{n}}$)n(n∈N*)的展开式中x的系数是an,展开式中所有项的系数和为bn,则$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{{b}_{n}}$=1.

分析 根据题意,求出an、bn,再求$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{{b}_{n}}$的值.

解答 解:(1+x)n+(1+x${\;}^{\frac{1}{2}}$)n+(1+x${\;}^{\frac{1}{3}}$)n+…+(1+x${\;}^{\frac{1}{n}}$)n(n∈N*)的展开式中x的系数是
an=${C}_{n}^{1}$+${C}_{n}^{2}$+${C}_{n}^{3}$+…+${C}_{n}^{n}$=2n-1,
展开式中所有项的系数和为bn=2n+2n+2n+…+2n=n•2n
所以,$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{{b}_{n}}$=$\underset{lim}{n→∞}$$\frac{n{(2}^{n}-1)}{n{•2}^{n}}$=1-$\underset{lim}{n→∞}$$\frac{1}{{2}^{n}}$=1.
故答案为:1.

点评 本题考查了用赋值法求二项展开式系数的应用问题,也考查了极限的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=sin(x+\frac{π}{6})+sin(x-\frac{π}{6})+cosx+a$的最大值为1.
(Ⅰ)求常数a的值;
(Ⅱ)若A为△ABC的内角,$A∈({0,\frac{π}{2}})$,$f(A)=\sqrt{3}-1$,△ABC的面积为$\sqrt{3}$,AB=$2\sqrt{3}$,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC中,内角A,B,C所对的边分别是a,b,c,已知sinAsinB=sinCtanC.
(1)求$\frac{{a}^{2}{+b}^{2}}{{c}^{2}}$的值:
(2)若a=$\frac{\sqrt{2}}{2}$c,且△ABC的面积为4,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用分析法证明:在△ABC中,如果∠A的外角平分线与三角形的外接圆相交于点D,那么BD=CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{-x}+1,x≤0}\end{array}\right.$,则f(f(1))+f(log3$\frac{1}{2}$)的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是满足f(x+2)=-f(x)的奇函数,且当0≤x<1时,f(x)=(x-$\frac{1}{2}$)2-1.
(1)证明:4是函数f(x)的一个周期;
(2)求当7<x≤8时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合M={x||x|≤5,x∈N},P={x|x>1},则M∩P=(  )
A.{2,3,4}B.{2,3,4,5}C.{1,2,3,4,5}D.{x|1<x≤5,x∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从4名男代表和2名女代表中选出3人参加座谈会,必须有女代表参加的不同选法共有(  )种.
A.12B.13C.16D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知sinβ+cosβ=$\frac{1}{5}$,β∈[0,π],则tanβ的值为-$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案