分析 (Ⅰ)由三角函数公式化简可得f(x)=2sin(x+$\frac{π}{6}$)+a由最大值为1可2+a=1,解方程可得;
(Ⅱ)由题意和(Ⅰ)可得$A=\frac{π}{6}$,由三角形的面积公式可得b=2,再由余弦定理可得.
解答 解:(Ⅰ)由三角函数公式化简可得:
f(x)=$\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}$cosx+cosx+a
=$\sqrt{3}$sinx+cosx+a=2sin(x+$\frac{π}{6}$)+a
由最大值为1可2+a=1,解得a=-1,
∴$f(x)=2sin(x+\frac{π}{6})-1$;
(Ⅱ)由$f(A)=2sin(A+\frac{π}{6})-1=\sqrt{3}-1$,$A∈({0,\frac{π}{2}})$,得$A=\frac{π}{6}$,
∵$S=\frac{1}{2}bcsinA=\sqrt{3}$,∴b=2,∵a2=b2+c2-2bccosA=4,
∴a=2,即BC的长为2.
点评 本题考查正余弦定理解三角形,涉及三角形的面积公式,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 0 | C. | -2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | [2,2$\sqrt{2}$] | C. | [1,2$\sqrt{2}$] | D. | [$\sqrt{3}$,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x+$\sqrt{2}$ | B. | y=-x+$\sqrt{2}$ | C. | y=x-$\sqrt{2}$ | D. | y=-x-$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com