精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=\frac{a}{{{a^2}-1}}({a^x}-{a^{-x}})\;(a>0且a≠1)$.
(1)判断f(x)的奇偶性;
(2)当x∈[-1,1]时,f(x)≥m恒成立,求m的取值范围.

分析 (1)根据函数奇偶性的定义判断即可;(2)根据函数单调性的定义判断其单调性,从而求出函数的最小值,求出m的范围.

解答 解:(1)在函数f(x)的定义域R上任取一自变量x
因为$f(-x)=\frac{a}{{{a^2}-1}}({a^{-x}}-{a^x})$=-f(x),
所以函数f(x)为奇函数;┅(3分)
(2)当a>1时,在[-1,1]上任取x1,x2,令x1<x2
$f({x_1})-f({x_2})=\frac{a}{{{a^2}-1}}({{a^{x_1}}-{a^{-{x_1}}}-{a^{x_2}}+{a^{-{x_2}}}})$
=$\frac{a}{{{a^2}-1}}({{a^{x_1}}-{a^{x_2}}})({1+\frac{1}{{{a^{x_1}}{a^{x_2}}}}})$,
∵0≤x1<x2≤1,
∴f(x1)-f(x2)<0
所以函数f(x)在x∈[-1,1]时为增函数,┅(4分)
当0<a<1时,同理可证函数f(x)在x∈[-1,1]时为增函数,
$f{(x)_{min}}=f(-1)=\frac{a}{{{a^2}-1}}({a-{a^{-1}}})=1$,
所以m≤1┅(3分)

点评 本题考查了函数恒成立问题,考查函数的单调性、奇偶性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,在棱长为2 的正方体ABCD-A1B1C1D1中,M是A1B1的中点,点P是侧面CDD1C1上的动点,且MP∥截面AB1C,则线段MP长度的取值范围是(  )
A.$[{\sqrt{2},\sqrt{6}}]$B.$[{\sqrt{6},2\sqrt{2}}]$C.$[{\sqrt{6,}2\sqrt{3}}]$D.$[{\sqrt{6,}3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.①命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”.
②“x=1”是“x2-4x+3=0”的充要条件;
③若p∧q为假命题,则p、q均为假命题.
④对于命题p:?x0∈R,x02+2x0+2≤0,则¬p:?x∈R,x2+2x+2>0
上面四个命题中正确是(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中a1=3,其前n项和Sn满足Sn=$\frac{1}{2}$an+1-$\frac{3}{2}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设{bn}是公差为3的等差数列,b1=1.现将数列{an}中的a${\;}_{{b}_{1}}$,a${\;}_{{b}_{2}}$,…a${\;}_{{b}_{n}}$…抽出,按原有顺序组成一新数列{cn},试求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数$f(x)=\left\{\begin{array}{l}3x-1,\;x<3\\{2^x},\;x≥3\end{array}\right.$,则满足f(f(a))=2f(a)的a取值范围是(  )
A.$[{\frac{2}{3},\;\frac{4}{3}}]$B.$[{\frac{2}{3},\;+∞})$C.$[{\frac{4}{3},\;+∞})$D.$[{\frac{4}{3},\;+∞}]∪\left\{{\frac{2}{3}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,∠C=$\frac{π}{6}$,AC=2$\sqrt{3}$,AB=2,则BC的长是(  )
A.2B.4C.2或4D.4或8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=sin(x+\frac{π}{6})+sin(x-\frac{π}{6})+cosx+a$的最大值为1.
(Ⅰ)求常数a的值;
(Ⅱ)若A为△ABC的内角,$A∈({0,\frac{π}{2}})$,$f(A)=\sqrt{3}-1$,△ABC的面积为$\sqrt{3}$,AB=$2\sqrt{3}$,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC中,c=6$\sqrt{3}$,a=6,A=30°.则△ABC的形状是(  )
A.锐角三角形B.直角三角形
C.钝角三角形或锐角三角形D.钝角三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用分析法证明:在△ABC中,如果∠A的外角平分线与三角形的外接圆相交于点D,那么BD=CD.

查看答案和解析>>

同步练习册答案