| A. | 锐角三角形 | B. | 直角三角形 | ||
| C. | 钝角三角形或锐角三角形 | D. | 钝角三角形或直角三角形 |
分析 由正弦定理可得sinC=$\frac{csinA}{a}$=$\frac{\sqrt{3}}{2}$,C∈(0°,180°),即可得出.
解答 解:△ABC中,由正弦定理可得$\frac{c}{sinC}$=$\frac{a}{sinA}$,
∴sinC=$\frac{csinA}{a}$=$\frac{6\sqrt{3}×sin3{0}^{°}}{6}$=$\frac{\sqrt{3}}{2}$,C∈(0°,180°),
∴C=60°或120°,
当C=60°时,B=180°-A-C=90°,此时△ABC为直角三角形;
当C=120°时,B=180°-A-C=30°,此时△ABC为钝角三角形.
∴△ABC为钝角三角形或直角三角形.
故选:D.
点评 本题考查了正弦定理解三角形,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | [2,2$\sqrt{2}$] | C. | [1,2$\sqrt{2}$] | D. | [$\sqrt{3}$,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x+$\sqrt{2}$ | B. | y=-x+$\sqrt{2}$ | C. | y=x-$\sqrt{2}$ | D. | y=-x-$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com