精英家教网 > 高中数学 > 题目详情
2.已知复数z对应的点为z(x,y),若复数满足|z-1|2=(z-1)2,则点Z(x,y)的轨迹方程是y=0.

分析 根据|z-1|2=(z-1)2列出方程,化简求出点Z(x,y)的轨迹方程.

解答 解:∵复数z对应的点为z(x,y),且|z-1|2=(z-1)2
∴(x-1)2+y2=(x-1)2+2(x-1)•yi-y2,i为虚数单位;
化简得y2=(x-1)•yi,
即y=0;
∴点Z(x,y)的轨迹方程是y=0.
故答案为:y=0.

点评 本题考查了复数的概念与应用问题,也考查了求复平面内点的轨迹方程的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中a1=3,其前n项和Sn满足Sn=$\frac{1}{2}$an+1-$\frac{3}{2}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设{bn}是公差为3的等差数列,b1=1.现将数列{an}中的a${\;}_{{b}_{1}}$,a${\;}_{{b}_{2}}$,…a${\;}_{{b}_{n}}$…抽出,按原有顺序组成一新数列{cn},试求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC中,c=6$\sqrt{3}$,a=6,A=30°.则△ABC的形状是(  )
A.锐角三角形B.直角三角形
C.钝角三角形或锐角三角形D.钝角三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若f(x)为奇函数,且对任意实数x恒有f(x+3)-f(x-1)=0,则f(2)=(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC中,内角A,B,C所对的边分别是a,b,c,已知sinAsinB=sinCtanC.
(1)求$\frac{{a}^{2}{+b}^{2}}{{c}^{2}}$的值:
(2)若a=$\frac{\sqrt{2}}{2}$c,且△ABC的面积为4,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设1的立方虚根ω=$-\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,?=$-\frac{1}{2}$$-\frac{\sqrt{3}}{2}$i.
(1)试求ω1,ω2,ω3,ω4,ω5,ω6,由此推断ωn(n∈N*)规律,并把这个规律用式子表示出来.
(2)在等比数列{ωn}中,若ω1=1,ω2=$-\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,根据(1)的规律计算:ω12+…+ω12的值;
(3)已知n∈N*,f(n)=(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)n+($-\frac{1}{2}$$-\frac{\sqrt{3}}{2}$i)n,试化解集合A={f(n)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用分析法证明:在△ABC中,如果∠A的外角平分线与三角形的外接圆相交于点D,那么BD=CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是满足f(x+2)=-f(x)的奇函数,且当0≤x<1时,f(x)=(x-$\frac{1}{2}$)2-1.
(1)证明:4是函数f(x)的一个周期;
(2)求当7<x≤8时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.使得(x+$\sqrt{3}$i)3=log${\;}_{\sqrt{2}}$$\frac{1}{16}$成立的实数x为±1.

查看答案和解析>>

同步练习册答案