精英家教网 > 高中数学 > 题目详情
12.已知数列{an}中a1=3,其前n项和Sn满足Sn=$\frac{1}{2}$an+1-$\frac{3}{2}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设{bn}是公差为3的等差数列,b1=1.现将数列{an}中的a${\;}_{{b}_{1}}$,a${\;}_{{b}_{2}}$,…a${\;}_{{b}_{n}}$…抽出,按原有顺序组成一新数列{cn},试求数列{cn}的前n项和Tn

分析 (I)利用递推关系与等比数列的通项公式即可得出;
(II)bn=b1+(n-1)d=3n-2,可得${c_n}={a_{b_n}}={a_{3n-2}}={3^{3n-2}}$,再利用等比数列的前n项和公式即可得出.

解答 解:(Ⅰ)当n=1时,${S_1}={a_1}=\frac{1}{2}{a_2}-\frac{3}{2}=3$,∴a2=9            (2分)
∵${S_n}=\frac{1}{2}•{a_{n+1}}-\frac{3}{2}$,
∴${S_{n-1}}=\frac{1}{2}•{a_n}-\frac{3}{2},\;(n≥2)$,
相减得:$\frac{{{a_{n+1}}}}{a_n}=3\;(n≥2)$,
∴an=${a}_{2}•{3}^{n-2}$=3n,(5分)
当n=1时,符合${a_n}={3^n}$,(6分)
∴${a_n}={3^n}$.                                           (7分)
(Ⅱ)bn=b1+(n-1)d=3n-2,(9分)
${c_n}={a_{b_n}}={a_{3n-2}}={3^{3n-2}}$              (12分)
∴{cn}是以3为首项,以27为公比的等比数列,
∴${T_n}=\frac{{3(1-{{27}^n})}}{1-27}=\frac{3}{26}({27^n}-1)$                (15分)

点评 本题考查了递推关系、等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.过点(-1,0)与抛物线y=x2-1只有一个公共点的直线有(  )
A.3条B.2条C.1条D.0条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=sinx的最小正周期是(  )
A.πB.C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下列结论中:
①函数$y=x(1-2x)(0<x<\frac{1}{2})$有最大值为$\frac{1}{8}$;
 ②函数y=2-3x-$\frac{4}{x}$(x<0)有最大值2-4$\sqrt{3}$; 
③若a>0,则$(1+a)(1+\frac{1}{a})≥4$.
正确的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(π)=(  )
A.$\sqrt{3}$B.0C.-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,已知D是BC延长线上一点,若$\overrightarrow{BC}$=2$\overrightarrow{CD}$,点E为线段AD的中点,$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+$\frac{3}{4}\overrightarrow{AC}$,则λ=(  )
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{a}{{{a^2}-1}}({a^x}-{a^{-x}})\;(a>0且a≠1)$.
(1)判断f(x)的奇偶性;
(2)当x∈[-1,1]时,f(x)≥m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个直四棱柱的侧棱长等于2,底面是边长为1的正方形,如果其俯视图是一个面积为1的正方形,其侧视图的面积的取值范围是(  )
A.[1,2]B.[2,2$\sqrt{2}$]C.[1,2$\sqrt{2}$]D.[$\sqrt{3}$,2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数z对应的点为z(x,y),若复数满足|z-1|2=(z-1)2,则点Z(x,y)的轨迹方程是y=0.

查看答案和解析>>

同步练习册答案