精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,a7•a11=6,a4+a14=5,则
a20
a10
等于(  )
A、
2
3
B、
3
2
C、
3
2
2
3
D、-
2
3
或-
3
2
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:根据等比中项的性质可知a7•a11=a4•a14求得a4•a14的值,进而根据韦达定理判断出a4和a14为方程x2-5x+6=0的两个根,求得a4和a14,则
a20
a10
可求.
解答: 解:a7•a11=a4•a14=6
∴a4和a14为方程x2-5x+6=0的两个根,解得a4=2,a14=3或a4=3,a14=2
a20
a10
=
3
2
2
3

故选C.
点评:本题主要考查等比数列的性质.解题过程灵活利用了韦达定理,把数列的两项当做方程的根来解,简便了解题过程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C所对的边分别为a,b,c,且满足,
m
=(a,b),
n
=(sinA,sinB),
p
=(
2
a,c),
q
=(sinB,sinC),
m
n
=
p
q

(Ⅰ)求角C;
(Ⅱ)若c=
2
-1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数:f(x)=x2-4|x|+1,若关于x的方程:f(x)=2k恰有四个不等的实数根,则实数k的取值范围为(  )
A、-
3
2
<k<
1
2
B、-3<k<1
C、-6<k<2
D、k>-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=b,则
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα和cosα是关于x的方程5x2-mx+4=0的两根,且α在第二象限
(1)求tanα及m的值;
(2)求
2sin2α-sinα•cosα+3cos2α
1+sin2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x-1

(1)判断并证明函数f(x)在区间[2,6]上的单调性;
(2)求函数f(x)在区间[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+2x,x≤1
2ax-5,x>1
,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是(  )
A、a<0B、a≤0
C、a<3D、0<a<3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(2014x+
π
6
)+cos(2014x-
π
3
)的最大值为A,若存在实数x1,x2,使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1-x2|的最小值为(  )
A、
π
1007
B、
π
2014
C、
1007
D、
2
π
1007

查看答案和解析>>

科目:高中数学 来源: 题型:

若log23•log34•log4m=log3
27
,则m=
 

查看答案和解析>>

同步练习册答案