精英家教网 > 高中数学 > 题目详情

(能力挑战题)已知f(x)为R上的可导函数,且?x∈R,均有f(x)>f′(x),则有(  )

A.e2014f(-2014)<f(0),f(2014)>e2014f(0)

B.e2014f(-2014)<f(0),f(2014)<e2014f(0)

C.e2014f(-2014)>f(0),f(2014)>e2014f(0)

D.e2014f(-2014)>f(0),f(2014)<e2014f(0)

 

D

【解析】构造函数g(x)=,

则g′(x)==.

因为?x∈R,均有f(x)>f′(x),并且ex>0,

所以g′(x)<0,故函数g(x)=在R上单调递减,

所以g(-2014)>g(0),g(2014)<g(0),

>f(0),<f(0),

也就是e2014f(-2014)>f(0),f(2014)<e2014f(0),故选D.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学人教版评估检测 第六章 不等式、推理与证明(解析版) 题型:填空题

(2014·黄冈模拟)有纯农药液一桶,倒出8升后用水补满,然后又倒出4升后再用水补满,此时桶中的农药不超过容积的28%,问桶的容积最大为_______.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第五章 数列(解析版) 题型:填空题

已知函数f(x)=2x,等差数列{an}的公差为2,若f(a2+a4+a6+a8+a10)=4,则log2[f(a1)·f(a2)·f(a3)·…·f(a10)]=________.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第二章 函数、导数及其应用(解析版) 题型:解答题

(2014·成都模拟)已知函数f(x)=x2++alnx(x>0).

(1)若f(x)在[1,+∞)上单调递增,求a的取值范围.

(2)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1,x2总有不等式[f(x1)+f(x2)]≥f成立,则称函数y=f(x)为区间D上的“凹函数”.试证当a≤0时,f(x)为“凹函数”.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第二章 函数、导数及其应用(解析版) 题型:填空题

(2014·黄冈模拟)f(x)是定义在R上的偶函数,当x<0时,有f(x)+xf′(x)<0,且f(-4)=0,则不等式xf(x)>0的解集为________.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第二章 函数、导数及其应用(解析版) 题型:选择题

(2014·宜昌模拟)若定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在区间[0,1]上单调递减,则(  )

A.f(2)<f<f(1) B.f(1)<f(2)<f

C.f<f(2)<f(1) D.f(1)<f<f(2)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第九章计数原理与概率随机变量及其分布(解析版) 题型:解答题

(2014·黄冈模拟)某制造商3月生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如表:

分组

频数

频率

[39.95,39.97)

10

 

 

[39.97,39.99)

20

 

 

[39.99,40.01)

50

 

 

[40.01,40.03]

20

 

 

合计

100

 

 

 

(1)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图.

(2)若以上述频率作为概率,已知标准乒乓球的直径为40.00mm,试求这批乒乓球的直径误差不超过0.03mm的概率.

(3)统计方法中,同一组数据常用该组区间的中点值(例如,区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第三章 三角函数、解三角形(解析版) 题型:解答题

(2014·济南模拟)已知函数f(x)=sinωx-sin2+(ω>0)的最小正周期为π.

(1)求ω的值及函数f(x)的单调递增区间.

(2)当x∈时,求函数f(x)的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 集合、常用逻辑用语、不等式、函数与导数(解析版) 题型:解答题

已知函数f(x)=x3-ax+1.

(1)求x=1时,f(x)取得极值,求a的值;

(2)求f(x)在[0,1]上的最小值;

(3)若对任意m∈R,直线y=-x+m都不是曲线y=f(x)的切线,求a的取值范围.

 

查看答案和解析>>

同步练习册答案