| A. | -20 | B. | 19 | C. | -18 | D. | 21 |
分析 由于(|x|+$\frac{1}{|x|}$-2)3=$(\sqrt{|x|}-\frac{1}{\sqrt{|x|}})^{6}$,利用展开式中的通项公式即可得出.
解答 解:(|x|+$\frac{1}{|x|}$-2)3=$(\sqrt{|x|}-\frac{1}{\sqrt{|x|}})^{6}$展开式中的通项公式Tr+1=${∁}_{6}^{r}(\sqrt{|x|})^{6-r}(-\frac{1}{\sqrt{|x|}})^{r}$=(-1)r${∁}_{6}^{r}$$(\sqrt{|x|})^{6-2r}$,
令6-2r=0,解得r=3.
∴常数项为-${∁}_{6}^{3}$=-20.
故选:A.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}$ | B. | -$\frac{5}{4}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-y-2=0或5x+4y-1=0 | B. | x-y-2=0 | ||
| C. | x-y+2=0 | D. | x-y-2=0或4x+5y+1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com