精英家教网 > 高中数学 > 题目详情
14.在Rt△ABC中,BC=2,∠C=90°,点D满足$\overrightarrow{AD}=2\overrightarrow{DB}$,则$\overrightarrow{CB}•\overrightarrow{CD}$=$\frac{8}{3}$.

分析 运用向量的数量积的定义可得$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cosA=AC2,再由向量的加减运算和向量的平方即为模的平方,计算即可得到所求值.

解答 解:在Rt△ABC中,BC=2,∠C=90°,
$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cosA=AC2,且AB2-AC2=BC2=4,
由$\overrightarrow{AD}=2\overrightarrow{DB}$,可得$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$,
则$\overrightarrow{CB}•\overrightarrow{CD}$=($\overrightarrow{AB}$-$\overrightarrow{AC}$)•($\overrightarrow{AD}$-$\overrightarrow{AC}$)
=($\overrightarrow{AB}$-$\overrightarrow{AC}$)•($\frac{2}{3}$$\overrightarrow{AB}$-$\overrightarrow{AC}$)
=$\frac{2}{3}$$\overrightarrow{AB}$2-$\frac{5}{3}$$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{AC}$2
=$\frac{2}{3}$$\overrightarrow{AB}$2-$\frac{5}{3}$$\overrightarrow{AC}$2+$\overrightarrow{AC}$2=$\frac{2}{3}$($\overrightarrow{AB}$2-$\overrightarrow{AC}$2
=$\frac{2}{3}$$\overrightarrow{BC}$2=$\frac{2}{3}$×4=$\frac{8}{3}$.
故答案为:$\frac{8}{3}$.

点评 本题考查向量的数量积的定义和性质,主要是向量的平方即为模的平方,考查运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知$cosα=\frac{4}{5}$,$cos(α+β)=-\frac{5}{13}$,且α、β均为锐角,求cosβ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\frac{1}{3}{x^3}$-$\frac{b}{2}{x^2}$+x+d在R上单调,则b的取值范围为[-2,2].(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(|x|+$\frac{1}{|x|}$-2)3的展开式中的常数项为(  )
A.-20B.19C.-18D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知sin($α+\frac{π}{6}$)=$\frac{4}{5}$,则sin($α+\frac{7π}{6}$)的值是(  )
A.-$\frac{2\sqrt{3}}{5}$B.$\frac{2\sqrt{3}}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知p和q都是命题,则“命题p∨q为真命题”是“命题p∧q为真命题”的必要不充分条件.(填“充分不必要,必要不充分,充要或既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知Anm=11×10×9××…×5,则m+n为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-alnx(a∈R).
(1)当a=-1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)如果方程f(x)=0总有两个不相等的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式x2(x+1)≤0的解集为{x|x=0或x≤-1}.

查看答案和解析>>

同步练习册答案