精英家教网 > 高中数学 > 题目详情
7.过双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1右焦点F作一直线(不平行于坐标轴)交双曲线于A、B两点,若点M满足条件$\overrightarrow{MA}$+$\overrightarrow{MB}$=$\overrightarrow{0}$,O为坐标原点,则kAB•kOM的值为(  )
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

分析 求得双曲线的a,b,c,可得焦点F的坐标,设过F的直线为y=k(x-3),代入双曲线的方程,运用韦达定理和中点坐标公式,可得M的坐标,再由直线的斜率公式,计算即可得到所求值.

解答 解:双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的a=2,b=$\sqrt{5}$,
c=$\sqrt{{a}^{2}+{b}^{2}}$=3,即有F(3,0),
设过F的直线为y=k(x-3),
代入双曲线方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,可得
5x2-4k2(x-3)2=20,
即为(5-4k2)x2+24k2x-36k2-20=0,
设A(x1,y1),B(x2,y2),可得x1+x2=-$\frac{24{k}^{2}}{5-4{k}^{2}}$,
点M满足条件$\overrightarrow{MA}$+$\overrightarrow{MB}$=$\overrightarrow{0}$,可得M为AB的中点,
由中点坐标公式可得M(-$\frac{12{k}^{2}}{5-4{k}^{2}}$,-$\frac{15k}{5-4{k}^{2}}$),
则kAB•kOM=k•$\frac{-15k}{-12{k}^{2}}$=k•$\frac{5}{4k}$=$\frac{5}{4}$.
故选:A.

点评 本题考查双曲线的方程和性质,注意联立直线方程和双曲线的方程,运用韦达定理和中点坐标公式,考查直线的斜率公式的运用,以及化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若抛物线y=x2+a(1-2x)+a2+1的顶点在圆x2+y2=5的内部,则a的取值范围为区间(  )
A.(-2,2)B.(-1,1)C.(-2,1)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等边△ABC中,若$\overrightarrow{AP}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{AQ}$=$\overrightarrow{AP}$+t$\overrightarrow{AB}$,且$\overrightarrow{AP}$⊥$\overrightarrow{AQ}$,则实数t的值为-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,某小区进行绿化改造,计划围出一块三角形绿地ABC,其中一边利用现成的围墙BC,长度为a米,另外两边AB,AC使用某种新型材料,∠BAC=120°,设AB=x米,AC=y米.
(1)求x,y满足的关系式;
(2)若无论如何设计上述三角形绿地确保此材料都够用,则至少需准备长度为多少的此种新型材料?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设P是左、右顶点分别为A,B的双曲线x2-y2=1上的点,若直线PA的倾斜角为$\frac{2π}{3}$,则直线PB的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{11π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|(x-6)(x-2a-5)>0},集合B={x|[(a2+2)-x]•(2a-x)<0}.若a=5,求集合A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$cosα=\frac{4}{5}$,$cos(α+β)=-\frac{5}{13}$,且α、β均为锐角,求cosβ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合C={(x,y)|f(x,y)=0},若对于任意(x1,y1)∈C,存在(x2,y2)∈C,使x1x2+y1y2=0成立,则称集合C是“好集合”.给出下列4个集合:C1={(x,y)|x2+y2=9},C2={(x,y)|x2-y2=9},C3={(x,y)|2x2+y2=9},C4={(x,y)|x2+y=9},其中为“好集合”的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(|x|+$\frac{1}{|x|}$-2)3的展开式中的常数项为(  )
A.-20B.19C.-18D.21

查看答案和解析>>

同步练习册答案