精英家教网 > 高中数学 > 题目详情
18.已知等边△ABC中,若$\overrightarrow{AP}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{AQ}$=$\overrightarrow{AP}$+t$\overrightarrow{AB}$,且$\overrightarrow{AP}$⊥$\overrightarrow{AQ}$,则实数t的值为-$\frac{4}{5}$.

分析 根据的加减运算法则和向量的数量积的运算法则和向量垂直的条件即可求出.

解答 解:在等边△ABC中,
∴AB=AC,∠A=60°
∵$\overrightarrow{AP}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
∴$\overrightarrow{AQ}$=$\overrightarrow{AP}$+t$\overrightarrow{AB}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)+t$\overrightarrow{AB}$=($\frac{1}{3}$+t)$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,
∵$\overrightarrow{AP}$⊥$\overrightarrow{AQ}$,
∴$\overrightarrow{AP}$•$\overrightarrow{AQ}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•[($\frac{1}{3}$+t)$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$]=$\frac{1}{3}$($\frac{1}{3}$+t)|$\overrightarrow{AB}$|2+$\frac{1}{3}$|$\overrightarrow{AC}$|2+($\frac{4}{9}$+t)$\overrightarrow{AB}$$•\overrightarrow{AC}$,
=$\frac{1}{3}$($\frac{1}{3}$+t)|$\overrightarrow{AB}$|2+$\frac{1}{3}$|$\overrightarrow{AC}$|2+($\frac{4}{9}$+t)|$\overrightarrow{AB}$||$\overrightarrow{AC}$|•$\frac{1}{2}$=0,
∴$\frac{1}{9}$+$\frac{1}{3}$t+$\frac{1}{3}$+$\frac{2}{9}$+$\frac{1}{2}$t=0,
解得t=-$\frac{4}{5}$,
故答案为:-$\frac{4}{5}$.

点评 本题考查了加减运算法则和向量的数量积的运算法则和向量垂直的条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知A,B为不相等的非空集合,则“x∈A∪B”是“x∈A∩B”的必要不充分条件(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以点(-1,4)为圆心,半径为3的圆的方程是(x+1)2+(y-4)2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果实数x,y满足条$\left\{\begin{array}{l}{2x-y-1≥0}\\{2x+y-4≤0}\\{y-1≥0}\end{array}\right.$则z=$\frac{2x-y}{x}$的最大值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1+2a2+3a3+…+nan=$\frac{{n}^{2}}{2}$-n
(1)求数列{an}的通项公式;
(2)数列{an}有没有最小项?若有,求出这个最小项;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,AB=BC=3,AC=4,若$\overrightarrow{AC}$+2$\overrightarrow{DC}$=3$\overrightarrow{BC}$,则向量$\overrightarrow{CD}$在$\overrightarrow{CA}$方向上的投影为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某小区内有一块荒地ABCDE,今欲在该荒地上划出一块长方形地面(不改变方位)进行开发(如图所示),问如何设计才能使开发的面积最大?最大开发面积是多少?(已知BC=210m,CD=240m,DE=300m,EA=180m)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1右焦点F作一直线(不平行于坐标轴)交双曲线于A、B两点,若点M满足条件$\overrightarrow{MA}$+$\overrightarrow{MB}$=$\overrightarrow{0}$,O为坐标原点,则kAB•kOM的值为(  )
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=f′($\frac{π}{4}$)sinx+cosx,则 f($\frac{π}{2}$)=-$\sqrt{2}$-1.

查看答案和解析>>

同步练习册答案