(本小题满分13分)
已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜
率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
解:(1)∵焦距为4,∴c=2………………………………………………1分
又∵的离心率为……………………………… 2分
∴,∴a=,b=2………………………… 4分
∴标准方程为………………………………………6分
(2)设直线l方程:y=kx+1,A(x1,y1),B(x2,y2),
由得……………………7分
∴x1+x2=,x1x2=
由(1)知右焦点F坐标为(2,0),
∵右焦点F在圆内部,∴<0………………………………8分
∴(x1 -2)(x2-2)+ y1y2<0
即x1x2-2(x1+x2)+4+k2 x1x2+k(x1+x2)+1<0…………………… 9分
∴<0…………… 11分
∴k<……………………………………………………………… 12分
经检验得k<时,直线l与椭圆相交,
∴直线l的斜率k的范围为(-∞,)……………………………13
解析
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
椭圆的离心率,过右焦点的直线与椭圆相交
于A、B两点,当直线的斜率为1时,坐标原点到直线的距离为
⑴求椭圆C的方程;
⑵椭圆C上是否存在点,使得当直线绕点转到某一位置时,有成
立?若存在,求出所有满足条件的点的坐标及对应的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,且与轴相切,过原点作倾斜角为的直线,交于点,交圆于另一点,且
(1)求圆和抛物线C的方程;
(2)若为抛物线C上的动点,求的最小值;
(3)过上的动点Q向圆作切线,切点为S,T,
求证:直线ST恒过一个定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一
个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)设椭圆的对称中心为坐标原点,其中一个顶点为,右焦点与点
的距离为.
(1)求椭圆的方程;
(2)是否存在经过点的直线,使直线与椭圆相交于不同的两点满足?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com