精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)满足f(x)+f(-x)=0,在[-1,0]上为单调增函数,又α,β为锐角三角形二个内角,则(  )
A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(sinα)>f(cosβ)

分析 根据α和β的关系得出sinα>cosβ,再根据f(x)的单调性得出结论.

解答 解:∵f(x)+f(-x)=0,∴f(x)是奇函数,
∵f(x)在[-1,0]上为单调增函数,
∴f(x)在[0,1]上是增函数.
∵α,β为锐角三角形二个内角,
∴α+β>90°,即90°>α>90°-β>0,
∴1>sinα>sin(90°-β)=cosβ>0,
∴f(sinα)>f(cosβ).
故选:D.

点评 本题考查了奇函数的性质,三角恒等变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.某公司在进行人才招聘时,由甲乙丙丁戊5人入围,从学历看,这5人中2人为硕士,3人为博士:从年龄看,这5人中有3人小于30岁,2人大于30岁,已知甲丙属于相同的年龄段,而丁戊属于不同的年龄段,乙戊的学位相同,丙丁的学位不同,最后,只有一位年龄大于30岁的硕士应聘成功,据此,可以推出应聘成功者是丁.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2-ax-alnx(a∈R).
(1)若函数f(x)在x=1处取得极值,求a的值;
(2)当x∈[e,+∞)时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某厂输出产品x件的总成本$c(x)=1200+\frac{2}{75}{x^2}$(万元),已知产品单价P(万元)与产品件数x满足:$P=\frac{k}{x}$,生产100件这样的产品单价为50万元.
(1)设产量x为件时,总利润为L(x)(万元),求L(x)的解析式;
(2)产量x定位多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,∠A的內角平分线交BC于D,用正弦定理证明:$\frac{AB}{AC}$=$\frac{BD}{DC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知角α的顶点在原点,始边为x轴的非负半轴,若角α的终边过点$P(x,-\sqrt{2})$,且$cosα=\frac{{\sqrt{3}}}{6}x$(x≠0),判断角α所在的象限,并求sinα和tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在(0,2π)内,使|sinx|≥cosx成立的x的取值范围是[$\frac{π}{4}$,$\frac{7π}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知扇形的半径为1cm,圆心角为30°,则该扇形的面积为$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=$\frac{ex}{1+a{x}^{2}}$,其中a为正实数.
(1)若x=$\frac{1}{3}$是f(x)的一个极值点,求a的值
(2当a=$\frac{4}{3}$时,求f(x)的极值点;
(3)若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

同步练习册答案