精英家教网 > 高中数学 > 题目详情
18.已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.

分析 根据充分条件和必要条件的定义结合一元二次方程根与系数之间的关系进行证明即可.

解答 证明:(1)充分性:由韦达定理,得|b|=|αβ|=|α|•|β|<2×2=4.
fx)=x2+ax+b,则fx)的图象是开口向上的抛物线.
又|α|<2,|β|<2,∴f(±2)>0.
即有4+b>2>a-(4+b)
∵|b|<4,
∴4+b>0,
即2|a|<4+b
(2)必要性:
由2|a|<4+b,得f(±2)>0且fx)的图象是开口向上的抛物线.
∴方程fx)=0的两根αβ同在(-2,2)内或无实根.
αβ是方程fx)=0的实根,
αβ同在(-2,2)内,即|α|<2且|β|<2.

点评 本题主要考查充分条件和必要条件的证明,注意要证明充分性和必要性两个方面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2ax3-3ax2+1,g(x)=-$\frac{a}{4}$x+$\frac{3}{2}$,若任意给定的x0∈[0,2],总存在两个不同的xi(i=1,2)∈[0,2],使得f(xi)=g(x0)成立,则实数a的取值范围是(  )
A.(-∞,-1)B.(1,+∞)C.(-∞,-1)∪(1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若坐标原点到抛物线y=mx2的准线距离为2,则m=(  )
A.8B.±8C.$\frac{1}{8}$D.±$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过抛物线C:y=ax2(a>0)的焦点F作直线交C于P,Q两点,若线段PF与QF的长度分别为m,n,则m2+n2的最小值为(  )
A.$\frac{2}{{a}^{2}}$B.2a2C.$\frac{1}{2}$a2D.$\frac{1}{2{a}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式:
①a1=1,an+1=an+$\frac{{a}_{n}}{n+1}$(n∈N*
②a1=-1,an+1=an+$\frac{1}{n(n+1)}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列叙述正确的是(  )
A.数列2,3,5,7与数列3,2,7,5是同一个数列
B.同一个数在一个数列中可以重复出现
C.数列的通项公式是定义域为正整数集的函数
D.数列的通项公式是确定的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.不求值,比较下列两组正切函数值的大小:
(1)tan167°与tan173°;
(2)tan(-$\frac{11π}{4}$)与tan(-$\frac{13π}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,则z•$\overline{z}$=(  )
A.-1B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={a1,a2,…,an}中的元素都是正整数,且al<a2<…<an,集合A具有性质P:对任意的x,y∈A,且x≠y,有|x-y|≥$\frac{xy}{25}$.给出下列命题:
①集合{1,2,3,4}不具有性质P;    
②$\frac{1}{a_1}-\frac{1}{a_n}≥\frac{n-1}{25}$;
③不等式i(n-i)<25对于i=1,2,…,n-1均成立;  
④A中最多可以有10个元素.
其中正确命题的序号是②③(将所有正确命题的序号都填上)

查看答案和解析>>

同步练习册答案