| A. | (-∞,-1) | B. | (1,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | [-1,1] |
分析 由题意可以把问题转化为求函数f(x)和函数g(x)的最值,并有题意转化为两个函数的值域的关系问题即可得到结论.
解答 解:f′(x)=6ax2-6ax=6ax(x-1).
①当a=0时,显然不可能;
②当a>0时,函数f(x)的变化情况如下表所示
| x | 0 | (0,1) | 1 | (1,2) | 2 |
| f′(x) | 0 | - | 0 | + | |
| f(x) | 1 | 递减 | 极小值1-a | 1+4a |
| x | 0 | (0,1) | 1 | (1,2) | 2 |
| f′(x) | 0 | + | 0 | - | |
| f(x) | 1 | 递增 | 极大值1-a | 递减 | 1+4a |
点评 本题考查导数知识的运用,考查函数的单调性,考查存在性问题,确定函数的最大值是关键.综合性较强,有一定的难度.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\sqrt{5}$-1)∪($\sqrt{5}$-1,+∞) | B. | (-$\sqrt{5}$-1,$\sqrt{5}$-1) | C. | [-$\sqrt{5}$-1,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,$\sqrt{5}-1$] | D. | [-$\sqrt{5}-1$,$\sqrt{5}-1$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在区间(-3,1)上y=f(x)是增函数 | B. | 在区间(1,3)上y=f(x)是减函数 | ||
| C. | 在区间(4,5)上y=f(x)是增函数 | D. | 在x=2时y=f(x)取到极小值 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com