精英家教网 > 高中数学 > 题目详情
3.已知直线l:y=kx+3-k与双曲线:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1有交点,则实数k的取值范围是(  )
A.(-∞,-$\sqrt{5}$-1)∪($\sqrt{5}$-1,+∞)B.(-$\sqrt{5}$-1,$\sqrt{5}$-1)C.[-$\sqrt{5}$-1,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,$\sqrt{5}-1$]D.[-$\sqrt{5}-1$,$\sqrt{5}-1$]

分析 直线l:y=kx+3-k代入双曲线:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1,利用判别式大于等于0,即可求出实数k的取值范围.

解答 解:直线l:y=kx+3-k代入双曲线:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1,
整理可得(3-4k2)x2-8k(3-k)x-4(3-k)2-12=0,
∵直线l:y=kx+3-k与双曲线:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1有交点,
∴△=[-8k(3-k)]2-4(3-4k2)[-4(3-k)2-12]≥0,
∴8k4-24k3+9k2+18≥0,
∴-$\sqrt{5}-1$≤k≤$\sqrt{5}-1$,
故选:D.

点评 本题考查直线与双曲线的位置关系,考查求实数k的取值范围,正确利用判别式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设P为椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$上的点,F1,F2为其左、右焦点,且△PF1F2的面积为6,则$\overrightarrow{P{F_2}}•\overrightarrow{P{F_1}}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆x2+y2-4x-5=0的弦AB的中点为Q(3,1),直线AB交x轴于点P,则|PA|•|PB|=(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-$\sqrt{2}$)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若点A(a,-1)在函数f(x)=$\left\{\begin{array}{l}{lgx.0<x<1}\\{\sqrt{x},x≥1}\end{array}\right.$的图象上,则a=(  )
A.1B.10C.$\sqrt{10}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.己知各项均为正数的数列{an}满足an+12=2an2+anan+1,且a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=$\frac{{n{a_n}}}{{(2n+1){{.2}^n}}}$是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由;
(Ⅲ)令cn=$\frac{{{{(n+1)}^2}+1}}{{n(n+1){a_{n+2}}}}$,记数列{cn}的前n项和为Sn,其中n∈N*,求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某中学为了检验1000名在校高三学生对函数模块掌握的情况,进行了一次测试,并把成绩进行统计,得到样本频率分布直方图如图所示,则考试成绩的众数大约为(  )
A.55B.65C.75D.85

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x+2)是R上的偶函数,当x>2时,f(x)=x2+1,则当x<2时,f(x)=(  )
A.x2+1B.x2-8x+5C.x2+4x+5D.x2-8x+17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2ax3-3ax2+1,g(x)=-$\frac{a}{4}$x+$\frac{3}{2}$,若任意给定的x0∈[0,2],总存在两个不同的xi(i=1,2)∈[0,2],使得f(xi)=g(x0)成立,则实数a的取值范围是(  )
A.(-∞,-1)B.(1,+∞)C.(-∞,-1)∪(1,+∞)D.[-1,1]

查看答案和解析>>

同步练习册答案