精英家教网 > 高中数学 > 题目详情
7.已知圆C:(x-a)2+(y-b)2=r2,写出求圆上的点到圆外一点P0的距离最大值的算法,并画出程序框图.

分析 求出点与圆心的最大距离,加上半径,即得出圆上的点到圆外一点P0的距离最大值,从而写出算法.即可画出框图.

解答 解:算法如下:
第一步,输入x0,y0
第二步,输入a,b,r,
第三步,计算d=$\sqrt{(a-{x}_{0})^{2}+(b-{y}_{0})^{2}}+r$.
第四步,输出d.
程序框图如下:

点评 本题主要考查编写程序解决实际问题,考查点到圆上一点距离的最大值的求法,是基础题,解题要注意两点间距离公式的合理运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.方程x2+y2-2x+4y+6=0表示的图形为(  )
A.一个点B.一个圆C.一条直线D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(1,0),且点P(1,$\frac{3}{2}$)在椭圆上;
(1)求椭圆C的标准方程;
(2)当点P(x,y)在椭圆C上运动时,点Q($\frac{\sqrt{3}x}{3}$,$\frac{2y}{3}$)在曲线S上运动,求曲线S的轨迹方程,并指出该曲线是什么图形;
(3)过椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}-\frac{5}{3}}$=1上异于其顶点的任意一点Q作曲线S的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴,y轴的截距分别为m,n,试问:$\frac{1}{3{m}^{2}}$+$\frac{1}{{n}^{2}}$是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若sinα=-$\frac{1}{2}$,cosα=$\frac{\sqrt{3}}{2}$,则角α终边与单位圆交点P的坐标为($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列说法中所有正确的是①③④
①“p∧q”为真的一个必要不充分条件是“p∨q”为真
②若p:$\frac{1}{x}$>0,则¬p:$\frac{1}{x}$≤0
③若实数a,b满足$\sqrt{a}$+$\sqrt{b}$=1,则$\frac{1}{2}$≤a+b≤1
④数列{$\frac{{2}^{n}}{({2}^{n}+1)^{2}}$}(n∈N*)的最大项为$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知z∈C,且|z-2-2i|=1,(i为虚数单位),则|z+2-i|的最大值为$\sqrt{17}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线2ax+by-1=0(a>-1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则$\frac{1}{a+1}$+$\frac{2}{b}$的最小值为$\frac{3+2\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设a>0,b>0,且a+b=$\frac{1}{a}+\frac{1}{b}$
(1)证明:a+b≥2;
(2)a2+a≤2,求b2+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一个扇形的半径为5cm,圆心角为2弧度,则这个扇形的面积为25.

查看答案和解析>>

同步练习册答案