精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=\left\{\begin{array}{l}x,|x|≤1\\ sin\frac{π}{2}x,|x|>1\end{array}\right.$则下列结论正确的是(  )
A.函数f(x)在$[-\frac{π}{2},\frac{π}{2}]$上单调递增B.函数f(x)的值域是[-1,1]
C.?x0∈R,f(-x0)≠-f(x0D.?x∈R,f(-x)≠f(x)

分析 根据分段函数的表达式,作出函数f(x)的图象,根据函数单调性,值域以及奇偶性的性质进行判断即可.

解答 解:作出f(x)的图象如图,
A.则函数在[-1,1]上为增函数,则[1,$\frac{π}{2}$]上是减函数,则函数f(x)在$[-\frac{π}{2},\frac{π}{2}]$上单调递增错误,
B.函数f(x)的值域是[-1,1],故B正确,
C.当-1≤x≤1时,满足f(-x)=-f(x),故C错误,
D.当x=2时,f(-2)=f(2)=0,此时?x∈R,f(-x)≠f(x)不成立,故D错误,
故选:B.

点评 本题主要考查命题的真假判断,利用分段函数的表达式,作出函数的图象,利用函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A,B,C所对的边是a,b,c,已知a=2,则bcosC+ccosB等于(  )
A.1B.$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,a,b,c分别是A,B,C的对边,且A=$\frac{2π}{3}$,b+2c=8,则当△ABC的面积取得最大值时,a的值为2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设A1(-2$\sqrt{2}$,0),A2(2$\sqrt{2}$,0),P是动点,且直线A1P与A2P的斜率之积等于-$\frac{1}{2}$.
(1)求动点P的轨迹E的方程;
(2)设轨迹E的左右焦点分别为F1,F2,作两条互相垂直的直线MF1和MF2与轨迹E的交点分别为A,B和C,D,求证:$\frac{1}{|AB|}$+$\frac{1}{|CD|}$恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=-an-${(\frac{1}{2})}^{n-1}$+2(n∈N*).数列{bn}满足bn=2nan
(1)求证数列{bn}是等差数列,并求数列{an}的通项公式;
(2)设cn=log2$\frac{n}{{a}_{n}}$,数列{$\frac{1}{{c}_{n}{c}_{n+1}}$}的前n项和为Tn.若不等式λ≤Tn对任愈的n∈N*恒成立,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F1、F2是椭圆的两个焦点,若存在满足$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0的点M在椭圆外部,则椭圆离心率的取值范围是(  )
A.(0,1)B.($\frac{1}{2}$,1)C.($\frac{\sqrt{2}}{2}$,1)D.[$\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-3x(x≥0)}\\{ln(1-x)(x<0)}\end{array}\right.$,若|f(x)+4|≥a(x-1),则a的取值范围是(  )
A.[-1,3]B.[0,6]C.[0,5]D.[0,12]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a,b为正实数,直线x+y+a=0与圆(x-b)2+(y-1)2=2相切,则$\frac{(3-2b)^{2}}{2a}$的最小值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\sqrt{\frac{lnx}{2-x}}$的定义域为(0,2).

查看答案和解析>>

同步练习册答案