分析 由题意可得b=8-2c,代入三角形的面积公式S=$\frac{1}{2}$bcsin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$c(4-c),由基本不等式可得c和b值,由余弦定理可得a值.
解答 解:∵在△ABC中,A=$\frac{2π}{3}$,b+2c=8,
∴△ABC的面积S=$\frac{1}{2}$bcsin$\frac{2π}{3}$=$\frac{\sqrt{3}}{4}$bc=$\frac{\sqrt{3}}{4}$c(8-2c)
=$\frac{\sqrt{3}}{2}$c(4-c)≤$\frac{\sqrt{3}}{2}$($\frac{c+4-c}{2}$)2=2$\sqrt{3}$,
当且仅当c=4-c即c=2时取等号,此时b=4,
由余弦定理可得a2=b2+c2-2bccosA=16+4-2×4×2×(-$\frac{1}{2}$)=28,
开方可得a=2$\sqrt{7}$,
故答案为:2$\sqrt{7}$.
点评 本题考查余弦定理的应用和三角形的面积计算公式,涉及基本不等式求最值,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1,$\frac{π}{3}$ | B. | 1,$-\frac{π}{3}$ | C. | 2,$\frac{π}{3}$ | D. | 2,$-\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$ | B. | $\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$ | ||
| C. | $\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$或$\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$ | D. | $\frac{{4{y^2}}}{3}-\frac{x^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)在$[-\frac{π}{2},\frac{π}{2}]$上单调递增 | B. | 函数f(x)的值域是[-1,1] | ||
| C. | ?x0∈R,f(-x0)≠-f(x0) | D. | ?x∈R,f(-x)≠f(x) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com