精英家教网 > 高中数学 > 题目详情
10.广东佛山某学校参加暑假社会实践活动知识竞赛的学生中,得分在[80,90)中的有16人,得分在[90,100]中的有4人,用分层抽样的方法从得分在[80,100]的学生中抽取一个容量为5的样本,将该样本看成一个整体,从中任意选取2人,则其中恰有1人分数不低于90的概率为(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{3}{5}$

分析 利用分层抽样原理,在[80,90)组中应抽取的人数为$\frac{16}{16+4}×5=4$,设为a,b,c,d,在[90,100]组中应抽取1人,设为e,从5个人中任取2人,列出所有可能的组合,找出恰有1人分数不低于90的情况,然后求解概率.

解答 解:根据分层抽样原理,在[80,90)组中应抽取的人数为$\frac{16}{16+4}×5=4$,设为a,b,c,d,在[90,100]组中应抽取1人,设为e,从5个人中任取2人,所有可能的组合为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10种情况,其中恰有1人分数不低于90的情况有(a,e),(b,e),(c,e),(d,e)共4种,所以所求概率为$\frac{4}{10}=\frac{2}{5}$.
故选:C.

点评 本题考查分层抽样,列举法计算基本事件数及事件发生的概率,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{32π}{3}+32$B.$\frac{32π}{3}+16$C.16π+32D.36π+16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗生长情况,从这批树苗中随机测量了其中50棵树苗的高度(单位:厘米),把这些高度列成了如下的频率分布表:
组别[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
频数231415124
(1)在这批树苗中任取一棵,其高度在85厘米以上的概率大约是多少?
(2)这批树苗的平均高度大约是多少?
(3)为了进一步获得研究资料,若从[40,50)组中移出一棵树苗,从[90,100]组中移出两棵树苗进行试验研究,则[40,50)组中的树苗A和[90,100]组中的树苗C同时被移出的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知m是实数,命题p:函数$f(x)={log_2}({x^2}+m)$是定义域为R的偶函数,命题q:函数g(x)=(m2-2m-2)x是R上的减函数,若p∨q为真命题,p∧q为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点F(1,0),直线l:x=-1,直线l'垂直l于点P,线段PF的垂直平分线交l'于点Q.
(1)求点Q的轨迹方程C;
(2)过F做斜率为$\frac{1}{2}$的直线交C于A,B,过B作l平行线交C于D,求△ABD外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完,现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是(  )
A.①i≤7?②s=s-$\frac{1}{i}$③i=i+1B.①i≤128?②s=s-$\frac{1}{i}$③i=2i
C.①i≤7?②s=s-$\frac{1}{2i}$③i=i+1D.①i≤128?②s=s-$\frac{1}{2i}$③i=2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图是某几何体的三视图,则该几何体的俯视图的周长为(  )
A.7$+\sqrt{7}$B.4+4$\sqrt{3}$C.4+4$\sqrt{2}$D.6+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C:x2=2py(p>0)的焦点为F,点P为抛物线C上的一点,点P处的切线与直线y=x平行,且|PF|=3,则抛物线C的方程为(  )
A.x2=4yB.x2=8yC.x2=6yD.x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.射手小张在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13,计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率.

查看答案和解析>>

同步练习册答案