分析 (1)利用题意结合抛物线的定义即可确定轨迹方程;
(2)首先求得圆心坐标,然后结合弦长公式求得半径的值,据此整理计算即可求得最终结果.
解答 解:(1)由垂直平分线的性质可知:PQ=PF,结合抛物线的定义可得Q点的轨迹方程是以F点为焦点,以直线l为准线的抛物线,其轨迹方程C为:y2=4x.
(2)由题意可得,直线l的方程为:$y=\frac{1}{2}(x-1)$,
与抛物线方程C联立整理可得:y2-8y-4=0,则:y1+y2=8,y1y2=-4,
很明显△ABD外接圆的圆心为线段AB的垂直平分线与x轴的交点,
设AB中点为E,则 ${y}_{E}=\frac{{y}_{1}+{y}_{2}}{2}=4,{x}_{E}=\frac{(2{y}_{1}+1)+(2{y}_{2}+1)}{2}=9$,
中垂线方程为:y-4=-2(x-9),令y=0可得圆心坐标为:(11,0),
利用弦长公式:$|AB|=\sqrt{1+\frac{1}{{k}^{2}}}×|{y}_{1}-{y}_{2}|=\sqrt{5}×\sqrt{{({y}_{1}+{y}_{2})}^{2}-4{y}_{1}{y}_{2}}=20$,
圆心到直线AB:x-2y-1=0的距离为:$d=\frac{|11-2×0-1|}{\sqrt{{1}^{2}+{(-2)}^{2}}}=2\sqrt{5}$,
设圆的半径为R,据此有:${R}^{2}={(2\sqrt{5})}^{2}+{10}^{2}=120$,
则△ABD外接圆的方程是(x-11)2+y2=120.
点评 本题考查抛物线的定义,直线与抛物线的位置关系,圆的方程的求解等,重点考查学生对基础概念的理解和计算能力,属于中等题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S△PBC2=S△PAB2+S△PAC2 | B. | S△ABC2=S△PAB2+S△PAC2 | ||
| C. | S△ABC2=S△PAB2+S△PAC2+S△PBC2 | D. | S△PBC2=S△PAB2+S△PAC2+S△ABC2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com