16£®2017Äê5Ô£¬Ó¡¶ÈµçÓ°¡¶Ë¤õÓ°É£¡°Ö°Ö¡·ÔÚÖйúÉÏÓ³£¬ÎªÁËÁ˽âÒø´¨¹ÛÖÚµÄÂúÒâ¶È£¬Ä³Ó°ÔºËæ»úµ÷²éÁ˱¾Êйۿ´Ó°Æ¬µÄ¹ÛÖÚ£¬ÏÖ´Óµ÷²éÈËȺÖÐËæ»ú³éÈ¡13Ãû£¬²¢ÓÃÈçͼËùʾµÄ¾¥Ò¶Í¼¼Ç¼ÁËËûÃǵÄÂúÒâ¶È·ÖÊý£¨10·ÖÖÆ£¬ÇÒÒÔСÊýµãǰµÄһλÊý×ÖΪ¾¥£¬Ð¡ÊýµãºóµÄһλÊý×ÖΪҶ£©£®Èô·ÖÊý²»µÍÓÚ9·Ö£¬Ôò³Æ¸Ã¹ÛÖÚΪ¡°ÂúÒâ¹ÛÖÚ¡±£®
£¨1£©Õâ13¸ö·ÖÊýµÄÖÐλÊýºÍÖÚÊý·Ö±ðÊǶàÉÙ£¿
£¨2£©´Ó±¾´ÎËù¼Ç¼µÄÂúÒâ¶ÈÆÀ·Ö´óÓÚ9.1µÄ¡°ÂúÒâ¹ÛÖÚ¡±ÖÐËæ»ú³éÈ¡2ÈË£¬ÇóÕâ2È˵÷ֲ»Í¬µÄ¸ÅÂÊ£®

·ÖÎö £¨1£©Óɾ¥Ò¶Í¼ÄÜÇó³öÖÐλÊý£¬ÖÚÊý£®
£¨2£©Éè±¾´Î·ûºÏÌõ¼þµÄÂúÒâ¹ÛÖÚ·Ö±ðΪA1£¨9.2£©£¬A2£¨9.2£©£¬A3£¨9.2£©£¬A4£¨9.2£©£¬B1£¨9.3£©£¬B2£¨9.3£©£®ÀûÓÃÁоٷ¨ÄÜÇó³öÕâ2È˵÷ֲ»Í¬µÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©Óɾ¥Ò¶Í¼µÃ£º
ÖÐλÊý91£¬ÖÚÊý92£®
£¨2£©Éè±¾´Î·ûºÏÌõ¼þµÄÂúÒâ¹ÛÖÚ·Ö±ðΪ£º
A1£¨9.2£©£¬A2£¨9.2£©£¬A3£¨9.2£©£¬A4£¨9.2£©£¬B1£¨9.3£©£¬B2£¨9.3£©£®
ÆäÖÐÀ¨ºÅÄÚΪ¸ÃÈ˵ķÖÊý£¬Ôò´ÓÖÐÈÎÒâѡȡÁ½È˵ĿÉÄÜÓУº
£¨A1£¬A2£©£¬£¨A1£¬A3£©£¬£¨A1£¬A4£©£¬£¨A1£¬B1£©£¬£¨A1£¬B2£©£¬
£¨A2£¬A3£©£¬£¨A2£¬A4£©£¬£¨A2£¬B1£©£¬£¨A2£¬B2£©£¬
£¨A3£¬A4£©£¬£¨A3£¬B1£©£¬£¨A3£¬B2£©£¬
£¨A4£¬B1£©£¬£¨A4£¬B2£©£¬
£¨B1£¬B2£©£¬¹²15ÖÖ£¬
ÆäÖУ¬·ÖÊý²»Í¬µÄÓУº
£¨A1£¬B1£©£¬£¨A1£¬B2£©£¬£¨A2£¬B1£©£¬£¨A2£¬B2£©£¬£¨A3£¬B1£©£¬£¨A3£¬B2£©£¬£¨A4£¬B1£©£¬£¨A4£¬B2£©£¬¹²8ÖÖ£¬
ËùÒÔÕâ2È˵÷ֲ»Í¬µÄ¸ÅÂÊΪp=$\frac{8}{15}$£®

µãÆÀ ±¾Ì⿼²é¾¥Ò¶Í¼µÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬¿¼²é¾¥Ò¶Í¼¡¢¸ÅÂÊ¡¢Áоٷ¨µÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²éº¯ÊýÓë·½³Ì˼Ï룬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£®
£¨¢ñ£©µ±ÊäÈën=5ʱ£¬Ð´³öÊä³öµÄaµÄÖµ£»
£¨¢ò£©µ±ÊäÈën=100ʱ£¬Ð´³öÊä³öµÄTµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®µãF£¨c£¬0£©ÎªË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µã£¬µãPΪ˫ÇúÏß×óÖ§ÉÏÒ»µã£¬Ïß¶ÎPFÓëÔ²£¨x-$\frac{c}{3}$£©2+y2=$\frac{{b}^{2}}{9}$ÏàÇÐÓÚµãQ£¬ÇÒ$\overrightarrow{PQ}$=2$\overrightarrow{QF}$£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®$\sqrt{5}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªµãMÔÚÖ±Ïßx+y+a=0ÉÏ£¬¹ýµãMÒýÔ²x2+y2=2µÄÇÐÏߣ¬ÈôÇÐÏß³¤µÄ×îСֵΪ2$\sqrt{2}$£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®¡À2$\sqrt{2}$B£®¡À3C£®¡À4D£®¡À2$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®º¯Êýf£¨x£©=sin£¨x+¦Õ£©-2cosxsin¦ÕµÄ×îСֵΪ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ä³ÖÐѧÉúÎïÐËȤС×éÔÚѧУÉúÎïÔ°µØÖÖÖ²ÁËÒ»ÅúÃû¹óÊ÷Ã磬ΪÁ˽âÊ÷ÃçÉú³¤Çé¿ö£¬´ÓÕâÅúÊ÷ÃçÖÐËæ»ú²âÁ¿ÁËÆäÖÐ50¿ÃÊ÷ÃçµÄ¸ß¶È£¨µ¥Î»£ºÀåÃ×£©£¬°ÑÕâЩ¸ß¶ÈÁгÉÁËÈçÏÂµÄÆµÂÊ·Ö²¼±í£º
×é±ð[40£¬50£©[50£¬60£©[60£¬70£©[70£¬80£©[80£¬90£©[90£¬100]
ƵÊý231415124
£¨1£©ÔÚÕâÅúÊ÷ÃçÖÐÈÎȡһ¿Ã£¬Æä¸ß¶ÈÔÚ85ÀåÃ×ÒÔÉϵĸÅÂÊ´óÔ¼ÊǶàÉÙ£¿
£¨2£©ÕâÅúÊ÷ÃçµÄƽ¾ù¸ß¶È´óÔ¼ÊǶàÉÙ£¿
£¨3£©ÎªÁ˽øÒ»²½»ñµÃÑо¿×ÊÁÏ£¬Èô´Ó[40£¬50£©×éÖÐÒÆ³öÒ»¿ÃÊ÷Ã磬´Ó[90£¬100]×éÖÐÒÆ³öÁ½¿ÃÊ÷Ãç½øÐÐÊÔÑéÑо¿£¬Ôò[40£¬50£©×éÖеÄÊ÷ÃçAºÍ[90£¬100]×éÖеÄÊ÷ÃçCͬʱ±»ÒƳöµÄ¸ÅÂÊÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚÊýÁÐ{an}ÖУ¬a1=2£¬${a_{n+1}}=2£¨1+\frac{1}{n}£©{a_n}$£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éè${b_n}=\frac{2^n}{a_n}$£¬ÊýÁÐ{bn}µÄǰnÏîµÄºÍΪSn£¬ÊÔÇóÊýÁÐ{S2n-Sn}µÄ×îСֵ£»
£¨3£©ÇóÖ¤£ºµ±n¡Ý2ʱ£¬${S_{2^n}}¡Ý\frac{7n+11}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªµãF£¨1£¬0£©£¬Ö±Ïßl£ºx=-1£¬Ö±Ïßl'´¹Ö±lÓÚµãP£¬Ïß¶ÎPFµÄ´¹Ö±Æ½·ÖÏß½»l'ÓÚµãQ£®
£¨1£©ÇóµãQµÄ¹ì¼£·½³ÌC£»
£¨2£©¹ýF×öбÂÊΪ$\frac{1}{2}$µÄÖ±Ïß½»CÓÚA£¬B£¬¹ýB×÷lƽÐÐÏß½»CÓÚD£¬Çó¡÷ABDÍâ½ÓÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÏÖÓÐÕâôһÁÐÊý£¬2£¬$\frac{3}{2}$£¬$\frac{5}{4}$£¬$\frac{7}{8}$£¬£¨¡¡¡¡£©£¬$\frac{13}{32}$£¬$\frac{17}{64}$£¬¡­£¬°´ÕÕ¹æÂÉ£¬£¨¡¡¡¡£©ÖеÄÊýӦΪ$\frac{11}{16}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸