精英家教网 > 高中数学 > 题目详情
2.如图是某几何体的三视图,则该几何体的俯视图的周长为(  )
A.7$+\sqrt{7}$B.4+4$\sqrt{3}$C.4+4$\sqrt{2}$D.6+2$\sqrt{2}$

分析 几何体为三棱锥,且三棱锥的一侧面垂直于底面,结合直观图求出俯视图的周长.

解答 解:由三视图知:几何体为三棱锥,且三棱锥的一侧面SAC⊥底面ABC,高为2,
底面ABC为等腰三角形,且AC=4,如图所示:
∴该几何体俯视图ABC的周长是
L=AC+2BC=4+2×$\sqrt{{2}^{2}{+(2\sqrt{2})}^{2}}$=4+4$\sqrt{3}$.
故选:B.

点评 本题考查了由三视图求几何体俯视图的周长问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设P(x,y)是函数y=f(x)的图象上一点,向量$\overrightarrow{a}$=(1,(x-3)3),$\overrightarrow{b}$=(x-y-1,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$.数列{an}是公差不为0的等差数列,且f(a1)+f(a2)+…+f(a7)=14,则a1+a2+…+a7=(  )
A.0B.7C.14D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.
(Ⅰ)求T关于x的函数解析式;
(Ⅱ)求食堂每天面包需求量的中位数;
(Ⅲ)根据直方图估计利润T不少于100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.广东佛山某学校参加暑假社会实践活动知识竞赛的学生中,得分在[80,90)中的有16人,得分在[90,100]中的有4人,用分层抽样的方法从得分在[80,100]的学生中抽取一个容量为5的样本,将该样本看成一个整体,从中任意选取2人,则其中恰有1人分数不低于90的概率为(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=lnx-\frac{1}{2}a{x^2}+({1-a})x$,a∈R.
(1)讨论f(x)的单调性;
(2)当a=-2时,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:${x_1}+{x_2}>\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C1,C2的极坐标方程分别为ρ=2cosθ,$\sqrt{2}ρsin(θ-\frac{π}{4})=\frac{{\sqrt{3}}}{2}$,射线θ=φ,$θ=φ+\frac{π}{4}$,$θ=φ-\frac{π}{4}$与曲线C1交于(不包括极点O)三点A,B,C.
(Ⅰ)求证:$|OB|+|OC|=\sqrt{2}|OA|$;
(Ⅱ)当$φ=\frac{π}{12}$时,求点B到曲线C2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\frac{1-x}{{1+{x^2}}}{e^x}$,若f(x1)=f(x2),且x1<x2,关于下列命题:(1)f(x1)>f(-x2);(2)f(x2)>f(-x1);(3)f(x1)>f(-x1);(4)f(x2)>f(-x2).正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.
(1)求A∪B,(∁RA)∩B;
(2)若A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{25}{4}$πB.C.$\frac{29}{4}$πD.$\frac{31}{4}$π

查看答案和解析>>

同步练习册答案