精英家教网 > 高中数学 > 题目详情
1.设p:实数x满足(x-3a)(x-a)<0,其中a>0,命题q:实数x满足$\frac{x-3}{x-2}≤0$,
若?p是?q的充分不必要条件,求实数a的取值范围.

分析 p:实数x满足(x-3a)(x-a)<0,其中a>0,解得x范围.命题q:实数x满足$\frac{x-3}{x-2}≤0$,化为(x-2)(x-3)≤0,且x-2≠0,解得x范围.若?p是?q的充分不必要条件,则q是p的充分不必要条件,即可得出.

解答 解:p:实数x满足(x-3a)(x-a)<0,其中a>0,解得a<x<3a.
命题q:实数x满足$\frac{x-3}{x-2}≤0$,化为(x-2)(x-3)≤0,且x-2≠0,解得2<x≤3.
若?p是?q的充分不必要条件,则q是p的充分不必要条件,
∴$\left\{\begin{array}{l}{a≤2}\\{3<3a}\end{array}\right.$,解得1<a≤2.
∴实数a的取值范围是(1,2].

点评 本题考查了简易逻辑的判定方法、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若直线x+ay=2与直线2x+4y=5平行,则实数a的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.已知直线l的参数方程是$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}}\end{array}}\right.$(t为参数),圆C的极坐标方程为$ρ=2sin({\frac{π}{4}-θ})$
( I)求圆心C的直角坐标;
( II)已知P是直线l上的动点,PA、PB是圆C的切线,A、B是切点,C是圆心,求四边形PACB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的通项公式是an=$\frac{9{n}^{2}-9n+2}{9{n}^{2}-1}$.
(1)判断$\frac{98}{101}$是不是数列{an}中的一项;
(2)试判断数列{an}中的项是否都在区间(0,1)内;
(3)在区间($\frac{1}{3}$,$\frac{2}{3}$)内有无数列{an}中的项?若有,是第几项?若没有.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在平面直角坐标系中,O是坐标原点,动圆P经过点F(0,1),且与直线l1:y=-1相切.
(Ⅰ)求动圆圆心P的轨迹方程C;
(Ⅱ)过F(0,1)的直线m交曲线C于A、B两点,过A、B作曲线C的切线l1,l2,直线l1,l2交于点M,求△MAB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x∈R,记不超过x的最大整数为[x],例如[2.34]=2,[-1.5]=-2,令{x}=x-[x],则$\left\{{\frac{{\sqrt{5}+1}}{2}}\right\},[{\frac{{\sqrt{5}+1}}{2}}],\frac{{\sqrt{5}+1}}{2}$(  )
A.是等差数列但不是等比数列B.既是等差数列也是等比数列
C.是等比数列但不是等差数列D.既不是等差数列也不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.从三件正品、一件次品中随机取出两件,则取出的产品中一件正品,一件次品的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{8}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.复数$z=\frac{2i}{1+i}$(其中i为虚数单位),化简后z=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.记“点M(x,y)满足x2+y2≤a(a>0)”为事件A,记“M(x,y)满足$\left\{\begin{array}{l}{x-y+1≥0}\\{5x-2y-4≤0}\\{2x+y+2≥0}\end{array}\right.$”为事件B,若P(B|A)=1,则实数a的最大值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案