6£®Éèx¡ÊR£¬¼Ç²»³¬¹ýxµÄ×î´óÕûÊýΪ[x]£¬ÀýÈç[2.34]=2£¬[-1.5]=-2£¬Áî{x}=x-[x]£¬Ôò$\left\{{\frac{{\sqrt{5}+1}}{2}}\right\}£¬[{\frac{{\sqrt{5}+1}}{2}}]£¬\frac{{\sqrt{5}+1}}{2}$£¨¡¡¡¡£©
A£®ÊǵȲîÊýÁе«²»ÊǵȱÈÊýÁÐB£®¼ÈÊǵȲîÊýÁÐÒ²ÊǵȱÈÊýÁÐ
C£®ÊǵȱÈÊýÁе«²»ÊǵȲîÊýÁÐD£®¼È²»ÊǵȲîÊýÁÐÒ²²»ÊǵȱÈÊýÁÐ

·ÖÎö ¸ù¾ÝÌâÒ⣬¼ÆËã¿ÉµÃ$\frac{\sqrt{5}+1}{2}$¡Ö1.6£¬ÔòÓÐ[$\frac{\sqrt{5}+1}{2}$]=1£¬{$\frac{\sqrt{5}+1}{2}$}=$\frac{\sqrt{5}+1}{2}$-[$\frac{\sqrt{5}+1}{2}$]=$\frac{\sqrt{5}-1}{2}$£¬¼´¿ÉµÃ$\left\{{\frac{{\sqrt{5}+1}}{2}}\right\}£¬[{\frac{{\sqrt{5}+1}}{2}}]£¬\frac{{\sqrt{5}+1}}{2}$µÄÖµ£¬ÓɵȲîÊýÁк͵ȱÈÊýÁе͍Òå·ÖÎö¿ÉµÃ´ð°¸£®

½â´ð ½â£º¸ù¾ÝÌâÒ⣬$\frac{\sqrt{5}+1}{2}$¡Ö1.6£¬
Ôò[$\frac{\sqrt{5}+1}{2}$]=1£¬{$\frac{\sqrt{5}+1}{2}$}=$\frac{\sqrt{5}+1}{2}$-[$\frac{\sqrt{5}+1}{2}$]=$\frac{\sqrt{5}-1}{2}$£¬
Ôò$\left\{{\frac{{\sqrt{5}+1}}{2}}\right\}£¬[{\frac{{\sqrt{5}+1}}{2}}]£¬\frac{{\sqrt{5}+1}}{2}$£¬¼´$\frac{\sqrt{5}-1}{2}$£¬1£¬$\frac{\sqrt{5}+1}{2}$£¬
·ÖÎö¿ÉµÃ£º£¨$\frac{\sqrt{5}-1}{2}$£©¡Á£¨$\frac{\sqrt{5}+1}{2}$£©=12£¬$\left\{{\frac{{\sqrt{5}+1}}{2}}\right\}£¬[{\frac{{\sqrt{5}+1}}{2}}]£¬\frac{{\sqrt{5}+1}}{2}$³ÉµÈ±ÈÊýÁУ¬
£¨$\frac{\sqrt{5}-1}{2}$£©+£¨$\frac{\sqrt{5}+1}{2}$£©=$\sqrt{5}$¡Ù2¡Á1£¬$\left\{{\frac{{\sqrt{5}+1}}{2}}\right\}£¬[{\frac{{\sqrt{5}+1}}{2}}]£¬\frac{{\sqrt{5}+1}}{2}$²»³ÉµÈ²îÊýÁУ¬
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éµÈ±È¡¢µÈ²îÊýÁеÄÅжϣ¬×¢ÒâÀí½â{x}¡¢[x]µÄÒâÒå¼°¼ÆËã·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªm¡¢nΪÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á¡¢¦ÂΪÁ½¸ö²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐËĸö½áÂÛÖÐÕýÈ·µÄÐòºÅΪ¢Û£®
¢ÙÈôm¡Ín£¬n¡Î¦Á£¬Ôòm¡Í¦Á£»
¢ÚÈôm¡Î¦Â£¬¦Á¡Í¦Â£¬Ôòm¡Í¦Á£»
¢ÛÈôm¡Í¦Â£¬n¡Í¦Â£¬n¡Í¦Á£¬Ôòm¡Í¦Á£»
¢ÜÈôm¡Ín£¬n¡Í¦Â£¬¦Á¡Í¦Â£¬Ôòm¡Í¦Á

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©¾­¹ýµãM£¨2£¬1£©£¨Æ½ÃæÖ±½Ç×ø±êϵxOyÖеĵ㣩×÷Ö±Ïßl½»ÇúÏßCÓÚA£¬BÁ½µã£¬ÈôMÇ¡ºÃΪÏß¶ÎABµÄÖе㣬ÇóÖ±ÏßlµÄбÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®´Ó1£¬2£¬3£¬4£¬5£¬6ÖÐÈÎÈ¡Èý¸ö²»Í¬µÄÊý£¬ÔòÕâÈý¸öÊýÄܹ¹³ÉÒ»¸öµÈ²îÊýÁеĸÅÂÊΪ$\frac{3}{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Éèp£ºÊµÊýxÂú×㣨x-3a£©£¨x-a£©£¼0£¬ÆäÖÐa£¾0£¬ÃüÌâq£ºÊµÊýxÂú×ã$\frac{x-3}{x-2}¡Ü0$£¬
Èô?pÊÇ?qµÄ³ä·Ö²»±ØÒªÌõ¼þ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®É踴ÊýzÂú×ãi£¨z-2£©=3£¨iΪÐéÊýµ¥Î»£©£¬Ôòz=£¨¡¡¡¡£©
A£®2+3iB£®2-3iC£®3+2iD£®3-2i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈôÏòÁ¿$\overrightarrow{a}$=£¨1£¬x£©£¬$\overrightarrow{b}$=£¨2x+3£¬-x£©»¥Ïà´¹Ö±£¬ÆäÖÐx¡ÊR£¬Ôò|$\overrightarrow{a}$-$\overrightarrow{b}$|µÈÓÚ£¨¡¡¡¡£©
A£®-2»ò0B£®2C£®2»ò2D£®2»ò10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªËæ»ú±äÁ¿X·þ´ÓÕý̬·Ö²¼N£¨¦Ì£¬1£©£¬ÇÒP£¨2¡ÜX¡Ü4£©=0.6826£¬ÔòP£¨X£¾4£©µÈÓÚ£¨¡¡¡¡£©
A£®0.158 8B£®0.158 7C£®0.158 6D£®0.158 5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚ¡÷ABCÖУ¬µãDÔÚÏß¶ÎACÉÏ£¬AD=2DC£¬BD=$\frac{{4\sqrt{3}}}{3}$£¬ÇÒtan¡ÏABC=2$\sqrt{2}$£¬AB=2£¬Ôò¡÷BCDµÄÃæ»ýΪ$\frac{{2\sqrt{2}}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸