分析 (1)根据题意,由数列的通项公式可得,解$\frac{9{n}^{2}-9n+2}{9{n}^{2}-1}$=$\frac{98}{101}$可得n的值,判定n的值是否为正整数即可得答案;
(2)根据题意,将数列的通项公式变形为an=$\frac{9{n}^{2}-9n+2}{9{n}^{2}-1}$=$\frac{3n-2}{3n+1}$,结合n的范围分析an的取值范围,即可得答案;
(3)解$\frac{1}{3}$<$\frac{3n-2}{3n+1}$<$\frac{2}{3}$可得$\frac{7}{6}$<n<$\frac{8}{3}$,由n为正整数可得n的值,即可得答案.
解答 解:(1)根据题意,an=$\frac{9{n}^{2}-9n+2}{9{n}^{2}-1}$=$\frac{3n-2}{3n+1}$,
若$\frac{9{n}^{2}-9n+2}{9{n}^{2}-1}$=$\frac{98}{101}$,则有$\frac{3n-2}{3n+1}$=$\frac{98}{101}$
解可得n=$\frac{100}{3}$,不是正整数,
则$\frac{98}{101}$不是数列{an}中的一项;
(2)an=$\frac{9{n}^{2}-9n+2}{9{n}^{2}-1}$=$\frac{3n-2}{3n+1}$,
又由n≥1,则有0<an<1,
故数列{an}中的项都在区间(0,1)内;
(3)若$\frac{3n-2}{3n+1}$∈($\frac{1}{3}$,$\frac{2}{3}$),即$\frac{1}{3}$<$\frac{3n-2}{3n+1}$<$\frac{2}{3}$
解可得:$\frac{7}{6}$<n<$\frac{8}{3}$,
又由n为正整数,则n=2,
故在区间($\frac{1}{3}$,$\frac{2}{3}$)内有数列{an}中的项,为第二项.
点评 本题考查数列的通项公式、数列的函数特性,关键是理解掌握数列的通项公式的定义.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2或0 | B. | 2 | C. | 2或2 | D. | 2或10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com