精英家教网 > 高中数学 > 题目详情
19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,则z=2${\;}^{x-\frac{y}{2}}$的最小值为${2}^{-\frac{3}{2}}$.

分析 画出不等式组表示的平面区域,求出目标$m=x-\frac{y}{2}$的最小值,即可求出z的最小值.

解答 解:画不等式组$\left\{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域,如图所示;

由题可知$z={2^{x-\frac{y}{2}}}$,
设$m=x-\frac{y}{2}$,
要使z最小,只需m最小即可,
当经过点B(0,3)时,m最小为$-\frac{3}{2}$,
所以z的最小值为${2^{-\frac{3}{2}}}$.
故答案为:${2}^{-\frac{3}{2}}$.

点评 本题考查了线性规划的基本应用问题,利用目标函数的几何意义是解题的关键,利用数形结合是解题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的通项公式是an=$\frac{9{n}^{2}-9n+2}{9{n}^{2}-1}$.
(1)判断$\frac{98}{101}$是不是数列{an}中的一项;
(2)试判断数列{an}中的项是否都在区间(0,1)内;
(3)在区间($\frac{1}{3}$,$\frac{2}{3}$)内有无数列{an}中的项?若有,是第几项?若没有.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.复数$z=\frac{2i}{1+i}$(其中i为虚数单位),化简后z=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知中心在原点的椭圆C的右焦点为(1,0),一个顶点为$(0,\sqrt{3})$,若在此椭圆上存在不同两点关于直线y=2x+m对称,则m的取值范围是(  )
A.($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$)B.($-\frac{{2\sqrt{13}}}{13},\frac{{2\sqrt{13}}}{13}$)C.($-\frac{1}{2},\frac{1}{2}$)D.($-\frac{{\sqrt{15}}}{13},\frac{{\sqrt{15}}}{13}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正实数m,n满足$\frac{1}{m+n}$+$\frac{1}{m-n}$=1,则3m+2n的最小值为3+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}(1-x),}&{x≤0}\\{f(x-1)-f(x-2),}&{x>0}\end{array}}\right.$,则f(3)=(  )
A.-3B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.记“点M(x,y)满足x2+y2≤a(a>0)”为事件A,记“M(x,y)满足$\left\{\begin{array}{l}{x-y+1≥0}\\{5x-2y-4≤0}\\{2x+y+2≥0}\end{array}\right.$”为事件B,若P(B|A)=1,则实数a的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点A(-$\sqrt{3}$,0)和点B($\sqrt{3}$,0),动点M到A点的距离是4,线段MB的垂直平分线交线段MA于点P.
(1)求动点P的轨迹方程;
(2)若直线l过点D(1,0)且与椭圆交于E,F两点,求△OEF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“m>0”是“复数z=m+$\frac{2}{-1+i}$在复平面内对应点位于第四象限”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案