精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}(1-x),}&{x≤0}\\{f(x-1)-f(x-2),}&{x>0}\end{array}}\right.$,则f(3)=(  )
A.-3B.-1C.0D.1

分析 f(3)=f(2)-f(1)=[f(1)-f(0)]-f(0)=-f(0),由此能求出结果.

解答 解:∵函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}(1-x),}&{x≤0}\\{f(x-1)-f(x-2),}&{x>0}\end{array}}\right.$,
∴f(3)=f(2)-f(1)=[f(1)-f(0)]-f(1)=-f(0)=-log21=0.
故选:C.

点评 本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.从1,2,3,4,5,6中任取三个不同的数,则这三个数能构成一个等差数列的概率为$\frac{3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知随机变量X服从正态分布N(μ,1),且P(2≤X≤4)=0.6826,则P(X>4)等于(  )
A.0.158 8B.0.158 7C.0.158 6D.0.158 5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为$4({\sqrt{2}+1})$,一双曲线的顶点是该椭圆的焦点,且它的实轴长等于虚轴长,设P为该双曲线上异于顶点的任一点,直线OF1和PF2与椭圆的交点分别为A,B和C,D,其中A,C在x轴的同一侧.
(1)求椭圆和双曲线的标准方程;
(2)是否存在题设中的点P,使得$|{\overrightarrow{AB}}|+|{\overrightarrow{CD}}|=\frac{3}{4}\overrightarrow{AB}•\overrightarrow{CD}$?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,则z=2${\;}^{x-\frac{y}{2}}$的最小值为${2}^{-\frac{3}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,a1=1,an+1=λSn+1(n∈N*,λ≠-1),且a1、2a2、a3+3成等差数列.
(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)设bn=2an-1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,点D在线段AC上,AD=2DC,BD=$\frac{{4\sqrt{3}}}{3}$,且tan∠ABC=2$\sqrt{2}$,AB=2,则△BCD的面积为$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知偶函数f(x)在区间[0,+∞)上单调递减,则满足f(2x-1)<f(5)的x的取值范围是(  )
A.(-2,3)B.(-∞,-2)∪(3,+∞)C.[-2,3]D.(-∞,-3)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2ax+x2-2xlna(a>0,a≠1)
(1)求函数f(x)的最小值;
(2)若存在x1,x2∈[0,1],使得|f(x1)-f(x2)|≥2e-3(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

同步练习册答案