分析 (Ⅰ)an+1=λSn+1(n∈N*),可得an=λSn-1+1(n≥2),相减可得:an+1=(λ+1)an(n≥2),λ+1≠0,利用等比数列的通项公式即可得出.
(Ⅱ)由${a_3}={(λ+1)^2}$,且a1、2a2、a3+3成等差数列.可得4(λ+1)=1+(λ+1)2+3,解得λ=1,可得an,进而得到bn.再利用等比数列的求和公式即可得出.
解答 (Ⅰ)证明:∵an+1=λSn+1(n∈N*),∴an=λSn-1+1(n≥2),
∴an+1-an=λan,即an+1=(λ+1)an(n≥2),λ+1≠0,
又a1=1,a2=λS1+1=λ+1,
∴数列{an}是以1为首项,公比为λ+1的等比数列,
(Ⅱ)解:∵${a_3}={(λ+1)^2}$,且a1、2a2、a3+3成等差数列.
∴4(λ+1)=1+(λ+1)2+3,整理得λ2-2λ+1=0,得λ=1,
∴${a_n}={2^{n-1}}$.
∴${b_n}=2{a_n}-1={2^n}-1$,
∴${T_n}=(2-1)+({2^2}-1)+({2^3}-1)+…+({2^n}-1)$,=$\frac{{2(1-{2^n})}}{1-2}-n$=2n+1-2-n.
点评 本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 有两个内角是钝角 | B. | 至少有两个内角是钝角 | ||
| C. | 有三个内角是钝角 | D. | 没有一个内角是钝角 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com