精英家教网 > 高中数学 > 题目详情
18.在极坐标系中(0≤θ<2π),曲线ρcosθ=-1与曲线ρ=2sinθ的交点的极坐标为$(\sqrt{2},\frac{3}{4}π)$.

分析 先将原极坐标方程ρ=2sinθ与ρcosθ=-1化成直角坐标方程,再利用直角坐标方程求出交点,最后再转化成极坐标.

解答 解:∵曲线ρcosθ=-1,∴曲线的直角坐标方程为x=-1,
∵曲线ρ=2sinθ,∴曲线的直角坐标方程为x2+y2=2y,
联立$\left\{\begin{array}{l}{x=-1}\\{{x}^{2}+{y}^{2}=2y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,
$ρ=\sqrt{1+1}=\sqrt{2}$,$θ=\frac{3π}{4}$,
∴曲线ρcosθ=-1与曲线ρ=2sinθ的交点的极坐标为$(\sqrt{2},\frac{3}{4}π)$.
故答案为:$(\sqrt{2},\frac{3}{4}π)$.

点评 本题考查两条曲线的交点的极坐标的求法,考查直角坐标方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.用数学归纳法证明不等式“1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$≥1+$\frac{n}{2}$(n∈N*)”的过程中,由n=k到n=k+1时,不等式的左边(  )
A.增加了1项B.增加了2项C.增加了2kD.增加了2k+1项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,a1=1,an+1=λSn+1(n∈N*,λ≠-1),且a1、2a2、a3+3成等差数列.
(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)设bn=2an-1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=5sin(2x+α) 的图象关于y轴对称,则α=(  )
A.kπ,k∈zB.(2k+1)π,k∈zC.2kπ+$\frac{π}{2}$,k∈zD.kπ+$\frac{π}{2}$,k∈z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知偶函数f(x)在区间[0,+∞)上单调递减,则满足f(2x-1)<f(5)的x的取值范围是(  )
A.(-2,3)B.(-∞,-2)∪(3,+∞)C.[-2,3]D.(-∞,-3)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设抛物线y2=2px(p>0)被直线y=x-1截得弦长为$2\sqrt{6}$.
(1)求抛物线方程.
(2)以此弦为底边,以x轴上的点P为顶点作三角形,当此三角形的面积为$5\sqrt{3}$时,求点P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.焦点在y轴上,且渐近线方程为y=±2x的双曲线的方程是(  )
A.x2-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{y}^{2}}{4}$-x2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知O是边长为$2\sqrt{2}$的正方形ABCD的中心,点E、F分别是AD、BC的中点,沿对角线AC把正方形ABCD折成直二面角D-AC-B;
(Ⅰ)求∠EOF的大小;
(Ⅱ)求二面角E-OF-A的余弦值;
(Ⅲ)求点D到面EOF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x3+sinx,(-1<x<1),若f(x2)+f(-x)>0,则实数x的取值范围是:(-1,0).

查看答案和解析>>

同步练习册答案