精英家教网 > 高中数学 > 题目详情
8.函数f(x)=x3+sinx,(-1<x<1),若f(x2)+f(-x)>0,则实数x的取值范围是:(-1,0).

分析 根据题意,分析可得函数f(x)为奇函数且在(-1,1)上增函数,由此可以将f(x2)+f(-x)>0转化为$\left\{\begin{array}{l}{-1<{x}^{2}<1}\\{-1<x<1}\\{{x}^{2}>x}\end{array}\right.$,解可得x的取值范围,即可得答案.

解答 解:根据题意,函数f(x)=x3+sinx,f(-x)=(-x)3+sin(-x)=-(x3+sinx)=-f(x),故函数f(x)为奇函数,
其导数f′(x)=3x2+cosx,又由-1<x<1,则有f′(x)=3x2+cosx≥0,故函数f(x)为增函数,
f(x2)+f(-x)>0⇒f(x2)>-f(-x)⇒f(x2)>f(x)⇒$\left\{\begin{array}{l}{-1<{x}^{2}<1}\\{-1<x<1}\\{{x}^{2}>x}\end{array}\right.$,
解可得:-1<x<0,即x的取值范围是(-1,0);
故答案为:(-1,0)

点评 本题考查函数的奇偶性与单调性的综合应用,注意要先分析函数的奇偶性与单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在极坐标系中(0≤θ<2π),曲线ρcosθ=-1与曲线ρ=2sinθ的交点的极坐标为$(\sqrt{2},\frac{3}{4}π)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列{an}满足a1=$\frac{3}{2}$,an+1=a${\;}_{n}^{2}$-an+1,则M=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2017}}$的整数部分是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为(  )
A.$\frac{1}{2}$尺B.$\frac{8}{15}$尺C.$\frac{16}{29}$尺D.$\frac{16}{31}$尺

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\frac{1}{3}$ax3-x2+x在区间(0,2)上是单调增函数,则实数a的取值范围为a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={x|x≤3,x∈N*},B={-2,0,2,3},则A∩B=(  )
A.{3}B.{2,3}C.{0,2,3}D.{-2,0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设抛物线x2=4y,则其焦点坐标为(0,1),准线方程为y=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{{y}^{2}}{4}$-x2=1的一条渐近线方程为(  )
A.2x-y=0B.x-2y=0C.4x-y=0D.x-4y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某地政府为了对房地产市场进行调控决策,统计部门对外来人口和当地人口进行了买房的心理预期调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表(不全):
买房不买房犹豫总计
外来人口(单位:人)510
当地人口(单位:人)2010
总计
已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,求选取的3人的指标之和大于5的概率.

查看答案和解析>>

同步练习册答案