精英家教网 > 高中数学 > 题目详情
20.设抛物线x2=4y,则其焦点坐标为(0,1),准线方程为y=-1.

分析 根据题意,由抛物线的方程分析可得其焦点位置以及p的值,进而由抛物线的焦点坐标公式、准线方程计算即可得答案.

解答 解:根据题意,抛物线的方程为x2=4y,
其焦点在y轴正半轴上,且p=2,
则其焦点坐标为(0,1),
准线方程为y=-1;
故答案为:(0,1),y=-1.

点评 本题抛物线的标准方程,注意先分析其方程是不是标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.焦点在y轴上,且渐近线方程为y=±2x的双曲线的方程是(  )
A.x2-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{y}^{2}}{4}$-x2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1、F2,P是椭圆上任一点,则|PF1|×|PF2|的取值范围是(  )
A.(3,4)B.[3,4]C.(0,3]D.(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x3+sinx,(-1<x<1),若f(x2)+f(-x)>0,则实数x的取值范围是:(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设向量$\overrightarrow{a}$=(-1,-1,1),$\overrightarrow{b}$=(-1,0,1),则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在正项数列{an}中,若a1=1,且对所有n∈N*满足nan+1-(n+1)an=0,则a2017=(  )
A.1013B.1014C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.同时抛掷两颗均匀的骰子,请回答以下问题:
(1)求两个骰子都出现2点的概率;
(2)若同时抛掷两颗骰子180次,其中甲骰子出现20次2点,乙骰子出现30次2点,问两颗骰子出现2点是否相关?(χ2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}{n}_{+2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.    四棱锥P-ABCD的底面ABCD为边长为2的正方形,PA=2,PB=PD=2$\sqrt{2}$,E,F,G,H分别为棱PA,PB,AD,CD的中点.
(1)求CD与平面CFG所成角的正弦值;
(2)是探究棱PD上是否存在点M,使得平面CFG⊥平面MEH,若存在,求出$\frac{PM}{PD}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα=3,求$\frac{2sinα+3cosα}{3sinα-2cosα}$的值.

查看答案和解析>>

同步练习册答案