18£®Ä³µØÕþ¸®ÎªÁ˶Է¿µØ²úÊг¡½øÐе÷¿Ø¾ö²ß£¬Í³¼Æ²¿ÃŶÔÍâÀ´È˿ں͵±µØÈ˿ڽøÐÐÁËÂò·¿µÄÐÄÀíÔ¤ÆÚµ÷ÑУ¬Óüòµ¥Ëæ»ú³éÑùµÄ·½·¨³éÈ¡ÁË110È˽øÐÐͳ¼Æ£¬µÃµ½ÈçÏÂÁÐÁª±í£¨²»È«£©£º
Âò·¿²»Âò·¿ÓÌÔ¥×ܼÆ
ÍâÀ´È˿ڣ¨µ¥Î»£ºÈË£©510
µ±µØÈ˿ڣ¨µ¥Î»£ºÈË£©2010
×ܼÆ
ÒÑÖªÑù±¾ÖÐÍâÀ´ÈË¿ÚÊýÓëµ±µØÈË¿ÚÊýÖ®±ÈΪ3£º8£®
£¨1£©²¹È«ÉÏÊöÁÐÁª±í£»
£¨2£©´Ó²ÎÓëµ÷ÑеÄÍâÀ´ÈË¿ÚÖÐÓ÷ֲã³éÑù·½·¨³éÈ¡6ÈË£¬½øÒ»²½Í³¼ÆÍâÀ´È˿ڵÄijÏîÊÕÈëÖ¸±ê£¬ÈôÒ»¸öÂò·¿È˵ÄÖ¸±ê¼ÇΪ3£¬Ò»¸öÓÌÔ¥È˵ÄÖ¸±ê¼ÇΪ2£¬Ò»¸ö²»Âò·¿È˵ÄÖ¸±ê¼ÇΪ1£¬ÏÖÔÚ´ÓÕâ6ÈËÖÐÔÙËæ»úѡȡ3ÈË£¬ÇóѡȡµÄ3È˵ÄÖ¸±êÖ®ºÍ´óÓÚ5µÄ¸ÅÂÊ£®

·ÖÎö £¨1£©ÉèÍâÀ´ÈË¿ÚÖк͵±µØÈË¿ÚÖеÄÓÌÔ¥ÈËÊý·Ö±ðΪxÈË£¬yÈË£¬ÀûÓÃËæ»ú³éÑùÐÔÖÊÁгö·½³Ì×飬Çó³öx£¬y£¬Äܲ¹È«ÁÐÁª±í£®
£¨2£©´Ó²ÎÓëµ÷ÑеÄÍâÀ´ÈË¿ÚÖÐÓ÷ֲã³éÑù·½·¨³éÈ¡µÄ6ÈËÖУ¬Âò·¿1ÈË£¬²»Âò·¿2ÈË£¬ÓÌÔ¥3ÈË£¬ÕâÈýÀàÈË·Ö±ðÓÃY£¬N1£¬N2£¬D1£¬D2£¬D3±íʾ£¬ÀûÓÃÁоٷ¨ÄÜÇó³öѡȡµÄ3È˵ÄÖ¸±êÖ®ºÍ´óÓÚ5µÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©ÉèÍâÀ´ÈË¿ÚÖк͵±µØÈË¿ÚÖеÄÓÌÔ¥ÈËÊý·Ö±ðΪxÈË£¬yÈË£¬
Ôò$\left\{\begin{array}{l}\frac{15+x}{30+y}=\frac{3}{8}£¬\;\\£¨15+x£©+£¨30+y£©=110£¬\;\end{array}\right.$½âµÃ$\left\{\begin{array}{l}x=15£¬\;\\ y=50.\end{array}\right.$
Óɴ˲¹È«ÁÐÁª±í£¬ÈçÏ£º

Âò·¿²»Âò·¿ÓÌÔ¥×ܼÆ
ÍâÀ´È˿ڣ¨µ¥Î»£ºÈË£©5101530
µ±µØÈ˿ڣ¨µ¥Î»£ºÈË£©20105080
×ܼÆ252065110
£¨2£©´Ó²ÎÓëµ÷ÑеÄÍâÀ´ÈË¿ÚÖÐÓ÷ֲã³éÑù·½·¨³éÈ¡µÄ6ÈËÖУ¬Âò·¿1ÈË£¬²»Âò·¿2ÈË£¬ÓÌÔ¥3ÈË£¬
ÕâÈýÀàÈË·Ö±ðÓÃY£¬N1£¬N2£¬D1£¬D2£¬D3±íʾ£¬
´ÓÕâ6ÈËÖÐÔÙËæ»úѡȡ3ÈË£¬ÁгöËùÓÐѡȡÇé¿ö¼°ÏàÓ¦Ö¸±êÖ®ºÍÈçÏ£º
YD1D2=7£¬YD1D3=7£¬YD2D3=7£¬YN1D1=6£¬YN1D2=6£¬YN1D3=6£¬YN2D1=6£¬
YN2D2=6£¬YN2D3=6£¬D1D2D3=6£¬YN1N2=5£¬N1D1D2=5£¬N1D1D3=5£¬N1D2D3=5£¬
N2D1D2=5£¬N2D1D3=5£¬N2D2D3=5£¬N1N2D1=4£¬N1N2D2=4£¬N1N2D3=4£¬
ËùÓÐѡȡÇé¿öÓÐ20ÖÖ£¬ÆäÖÐÖ¸±êÖ®ºÍ´óÓÚ5µÄÓÐ10ÖÖ£¬
ËùÒÔѡȡµÄ3È˵ÄÖ¸±êÖ®ºÍ´óÓÚ5µÄ¸ÅÂÊΪ$P=\frac{10}{20}=\frac{1}{2}$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÁÐÁª±íµÄÓ¦Ó㬿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é¼¯ºÏ˼Ï룬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®º¯Êýf£¨x£©=x3+sinx£¬£¨-1£¼x£¼1£©£¬Èôf£¨x2£©+f£¨-x£©£¾0£¬ÔòʵÊýxµÄȡֵ·¶Î§ÊÇ£º£¨-1£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®    ËÄÀâ×¶P-ABCDµÄµ×ÃæABCDΪ±ß³¤Îª2µÄÕý·½ÐΣ¬PA=2£¬PB=PD=2$\sqrt{2}$£¬E£¬F£¬G£¬H·Ö±ðΪÀâPA£¬PB£¬AD£¬CDµÄÖе㣮
£¨1£©ÇóCDÓëÆ½ÃæCFGËù³É½ÇµÄÕýÏÒÖµ£»
£¨2£©ÊÇ̽¾¿ÀâPDÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹µÃÆ½ÃæCFG¡ÍÆ½ÃæMEH£¬Èô´æÔÚ£¬Çó³ö$\frac{PM}{PD}$µÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªm¡ÊR£¬¸´Êý$\frac{m-2i}{1+i}$ÊÇ´¿ÐéÊý£¨ÆäÖÐiÊÇÐéÊýµ¥Î»£©£¬ÔòʵÊým=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁÐÑ¡ÏîÖÐÊÇÕýÈ·µÄ¸³ÖµÓï¾äµÄÊÇ£¨¡¡¡¡£©
A£®4=iB£®B=A=3C£®x+y=0D£®i=1-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\overrightarrow{a}$Óë$\overrightarrow{b}$¹²Ïߣ¬$\overrightarrow{b}$Óë$\overrightarrow{c}$¹²Ïߣ¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{c}$Ò²¹²Ïß
B£®µ¥Î»ÏòÁ¿¶¼ÏàµÈ
C£®ÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$²»¹²Ïߣ¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{b}$¶¼ÊÇ·ÇÁãÏòÁ¿
D£®¹²ÏßÏòÁ¿Ò»¶¨ÔÚͬһֱÏßÉÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªtan¦Á=3£¬Çó$\frac{2sin¦Á+3cos¦Á}{3sin¦Á-2cos¦Á}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª$¦Á¡Ê£¨-¦Ð£¬-\frac{¦Ð}{2}£©£¬tan¦Á=\frac{3}{4}$£¬Ôò$cos£¨\frac{3¦Ð}{2}-¦Á£©+2{sin^2}\frac{¦Á}{2}$=£¨¡¡¡¡£©
A£®$\frac{6}{5}$B£®$\frac{12}{5}$C£®1D£®$-\frac{2}{5}$»ò$\frac{12}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔڵȱÈÊýÁÐ{an}ÖУ¬ÒÑÖªa3=4£¬a7-2a5-32=0£¬Ôòa5+a7=80£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸