精英家教网 > 高中数学 > 题目详情
1.已知点A在直线y=2x上,点B的坐标为(1,1),O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OB}$=6,则|$\overrightarrow{OA}$|=2$\sqrt{5}$.

分析 设A点坐标(m,2m),利用数量积列方程解出m,从而可得|$\overrightarrow{OA}$|.

解答 解:设点A的坐标为(m,2m),则$\overrightarrow{OA}$=(m,2m),$\overrightarrow{OB}$=(1,1),
∴$\overrightarrow{OA}•\overrightarrow{OB}$=m+2m=3m=6,解得m=2,∴$\overrightarrow{OA}$=(2,4),
∴|$\overrightarrow{OA}$|=$\sqrt{4+16}$=2$\sqrt{5}$.
故答案为:2$\sqrt{5}$.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设复数z满足i(z-2)=3(i为虚数单位),则z=(  )
A.2+3iB.2-3iC.3+2iD.3-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为$4({\sqrt{2}+1})$,一双曲线的顶点是该椭圆的焦点,且它的实轴长等于虚轴长,设P为该双曲线上异于顶点的任一点,直线OF1和PF2与椭圆的交点分别为A,B和C,D,其中A,C在x轴的同一侧.
(1)求椭圆和双曲线的标准方程;
(2)是否存在题设中的点P,使得$|{\overrightarrow{AB}}|+|{\overrightarrow{CD}}|=\frac{3}{4}\overrightarrow{AB}•\overrightarrow{CD}$?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,a1=1,an+1=λSn+1(n∈N*,λ≠-1),且a1、2a2、a3+3成等差数列.
(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)设bn=2an-1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,点D在线段AC上,AD=2DC,BD=$\frac{{4\sqrt{3}}}{3}$,且tan∠ABC=2$\sqrt{2}$,AB=2,则△BCD的面积为$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=5sin(2x+α) 的图象关于y轴对称,则α=(  )
A.kπ,k∈zB.(2k+1)π,k∈zC.2kπ+$\frac{π}{2}$,k∈zD.kπ+$\frac{π}{2}$,k∈z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知偶函数f(x)在区间[0,+∞)上单调递减,则满足f(2x-1)<f(5)的x的取值范围是(  )
A.(-2,3)B.(-∞,-2)∪(3,+∞)C.[-2,3]D.(-∞,-3)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.焦点在y轴上,且渐近线方程为y=±2x的双曲线的方程是(  )
A.x2-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{y}^{2}}{4}$-x2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1、F2,P是椭圆上任一点,则|PF1|×|PF2|的取值范围是(  )
A.(3,4)B.[3,4]C.(0,3]D.(0,4]

查看答案和解析>>

同步练习册答案